Merge changes from topic "libsnapshot-batch-writes" am: a96e27ca44

Original change: https://android-review.googlesource.com/c/platform/system/core/+/2335282

Change-Id: I592990a78ef752664e13ef455aef1017b27dc538
Signed-off-by: Automerger Merge Worker <android-build-automerger-merge-worker@system.gserviceaccount.com>
This commit is contained in:
Akilesh Kailash 2022-12-12 17:03:31 +00:00 committed by Automerger Merge Worker
commit 36fde3a46a
4 changed files with 579 additions and 43 deletions

View file

@ -16,10 +16,17 @@
#include <stdint.h>
#include <condition_variable>
#include <cstdint>
#include <future>
#include <memory>
#include <mutex>
#include <optional>
#include <queue>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/unique_fd.h>
#include <libsnapshot/cow_format.h>
@ -42,6 +49,12 @@ struct CowOptions {
// Preset the number of merged ops. Only useful for testing.
uint64_t num_merge_ops = 0;
// Number of threads for compression
int num_compress_threads = 0;
// Batch write cluster ops
bool batch_write = false;
};
// Interface for writing to a snapuserd COW. All operations are ordered; merges
@ -100,9 +113,40 @@ class ICowWriter {
CowOptions options_;
};
class CompressWorker {
public:
CompressWorker(CowCompressionAlgorithm compression, uint32_t block_size);
bool RunThread();
void EnqueueCompressBlocks(const void* buffer, size_t num_blocks);
bool GetCompressedBuffers(std::vector<std::basic_string<uint8_t>>* compressed_buf);
void Finalize();
private:
struct CompressWork {
const void* buffer;
size_t num_blocks;
bool compression_status = false;
std::vector<std::basic_string<uint8_t>> compressed_data;
};
CowCompressionAlgorithm compression_;
uint32_t block_size_;
std::queue<CompressWork> work_queue_;
std::queue<CompressWork> compressed_queue_;
std::mutex lock_;
std::condition_variable cv_;
bool stopped_ = false;
std::basic_string<uint8_t> Compress(const void* data, size_t length);
bool CompressBlocks(const void* buffer, size_t num_blocks,
std::vector<std::basic_string<uint8_t>>* compressed_data);
};
class CowWriter : public ICowWriter {
public:
explicit CowWriter(const CowOptions& options);
~CowWriter();
// Set up the writer.
// The file starts from the beginning.
@ -138,6 +182,7 @@ class CowWriter : public ICowWriter {
bool EmitBlocks(uint64_t new_block_start, const void* data, size_t size, uint64_t old_block,
uint16_t offset, uint8_t type);
void SetupHeaders();
void SetupWriteOptions();
bool ParseOptions();
bool OpenForWrite();
bool OpenForAppend(uint64_t label);
@ -145,9 +190,12 @@ class CowWriter : public ICowWriter {
bool WriteRawData(const void* data, size_t size);
bool WriteOperation(const CowOperation& op, const void* data = nullptr, size_t size = 0);
void AddOperation(const CowOperation& op);
std::basic_string<uint8_t> Compress(const void* data, size_t length);
void InitPos();
void InitBatchWrites();
void InitWorkers();
bool FlushCluster();
bool CompressBlocks(size_t num_blocks, const void* data);
bool SetFd(android::base::borrowed_fd fd);
bool Sync();
bool Truncate(off_t length);
@ -159,8 +207,11 @@ class CowWriter : public ICowWriter {
CowHeader header_{};
CowFooter footer_{};
CowCompressionAlgorithm compression_ = kCowCompressNone;
uint64_t current_op_pos_ = 0;
uint64_t next_op_pos_ = 0;
uint64_t next_data_pos_ = 0;
uint64_t current_data_pos_ = 0;
ssize_t total_data_written_ = 0;
uint32_t cluster_size_ = 0;
uint32_t current_cluster_size_ = 0;
uint64_t current_data_size_ = 0;
@ -168,6 +219,21 @@ class CowWriter : public ICowWriter {
bool merge_in_progress_ = false;
bool is_block_device_ = false;
uint64_t cow_image_size_ = INT64_MAX;
int num_compress_threads_ = 1;
std::vector<std::unique_ptr<CompressWorker>> compress_threads_;
std::vector<std::future<bool>> threads_;
std::vector<std::basic_string<uint8_t>> compressed_buf_;
std::vector<std::basic_string<uint8_t>>::iterator buf_iter_;
std::vector<std::unique_ptr<CowOperation>> opbuffer_vec_;
std::vector<std::unique_ptr<uint8_t[]>> databuffer_vec_;
std::unique_ptr<struct iovec[]> cowop_vec_;
int op_vec_index_ = 0;
std::unique_ptr<struct iovec[]> data_vec_;
int data_vec_index_ = 0;
bool batch_write_ = false;
};
} // namespace snapshot

View file

@ -298,6 +298,150 @@ TEST_F(CowTest, CompressGz) {
ASSERT_TRUE(iter->Done());
}
class CompressionRWTest : public CowTest, public testing::WithParamInterface<const char*> {};
TEST_P(CompressionRWTest, ThreadedBatchWrites) {
CowOptions options;
options.compression = GetParam();
options.num_compress_threads = 2;
CowWriter writer(options);
ASSERT_TRUE(writer.Initialize(cow_->fd));
std::string xor_data = "This is test data-1. Testing xor";
xor_data.resize(options.block_size, '\0');
ASSERT_TRUE(writer.AddXorBlocks(50, xor_data.data(), xor_data.size(), 24, 10));
std::string data = "This is test data-2. Testing replace ops";
data.resize(options.block_size * 2048, '\0');
ASSERT_TRUE(writer.AddRawBlocks(100, data.data(), data.size()));
std::string data2 = "This is test data-3. Testing replace ops";
data2.resize(options.block_size * 259, '\0');
ASSERT_TRUE(writer.AddRawBlocks(6000, data2.data(), data2.size()));
std::string data3 = "This is test data-4. Testing replace ops";
data3.resize(options.block_size, '\0');
ASSERT_TRUE(writer.AddRawBlocks(9000, data3.data(), data3.size()));
ASSERT_TRUE(writer.Finalize());
int expected_blocks = (1 + 2048 + 259 + 1);
ASSERT_EQ(lseek(cow_->fd, 0, SEEK_SET), 0);
CowReader reader;
ASSERT_TRUE(reader.Parse(cow_->fd));
auto iter = reader.GetOpIter();
ASSERT_NE(iter, nullptr);
int total_blocks = 0;
while (!iter->Done()) {
auto op = &iter->Get();
if (op->type == kCowXorOp) {
total_blocks += 1;
StringSink sink;
ASSERT_EQ(op->new_block, 50);
ASSERT_EQ(op->source, 98314); // 4096 * 24 + 10
ASSERT_TRUE(reader.ReadData(*op, &sink));
ASSERT_EQ(sink.stream(), xor_data);
}
if (op->type == kCowReplaceOp) {
total_blocks += 1;
if (op->new_block == 100) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
data.resize(options.block_size);
ASSERT_EQ(sink.stream(), data);
}
if (op->new_block == 6000) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
data2.resize(options.block_size);
ASSERT_EQ(sink.stream(), data2);
}
if (op->new_block == 9000) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
ASSERT_EQ(sink.stream(), data3);
}
}
iter->Next();
}
ASSERT_EQ(total_blocks, expected_blocks);
}
TEST_P(CompressionRWTest, NoBatchWrites) {
CowOptions options;
options.compression = GetParam();
options.num_compress_threads = 1;
options.cluster_ops = 0;
CowWriter writer(options);
ASSERT_TRUE(writer.Initialize(cow_->fd));
std::string data = "Testing replace ops without batch writes";
data.resize(options.block_size * 1024, '\0');
ASSERT_TRUE(writer.AddRawBlocks(50, data.data(), data.size()));
std::string data2 = "Testing odd blocks without batch writes";
data2.resize(options.block_size * 111, '\0');
ASSERT_TRUE(writer.AddRawBlocks(3000, data2.data(), data2.size()));
std::string data3 = "Testing single 4k block";
data3.resize(options.block_size, '\0');
ASSERT_TRUE(writer.AddRawBlocks(5000, data3.data(), data3.size()));
ASSERT_TRUE(writer.Finalize());
int expected_blocks = (1024 + 111 + 1);
ASSERT_EQ(lseek(cow_->fd, 0, SEEK_SET), 0);
CowReader reader;
ASSERT_TRUE(reader.Parse(cow_->fd));
auto iter = reader.GetOpIter();
ASSERT_NE(iter, nullptr);
int total_blocks = 0;
while (!iter->Done()) {
auto op = &iter->Get();
if (op->type == kCowReplaceOp) {
total_blocks += 1;
if (op->new_block == 50) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
data.resize(options.block_size);
ASSERT_EQ(sink.stream(), data);
}
if (op->new_block == 3000) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
data2.resize(options.block_size);
ASSERT_EQ(sink.stream(), data2);
}
if (op->new_block == 5000) {
StringSink sink;
ASSERT_TRUE(reader.ReadData(*op, &sink));
ASSERT_EQ(sink.stream(), data3);
}
}
iter->Next();
}
ASSERT_EQ(total_blocks, expected_blocks);
}
INSTANTIATE_TEST_SUITE_P(CowApi, CompressionRWTest, testing::Values("none", "gz", "brotli", "lz4"));
TEST_F(CowTest, ClusterCompressGz) {
CowOptions options;
options.compression = "gz";

View file

@ -33,7 +33,7 @@
namespace android {
namespace snapshot {
std::basic_string<uint8_t> CowWriter::Compress(const void* data, size_t length) {
std::basic_string<uint8_t> CompressWorker::Compress(const void* data, size_t length) {
switch (compression_) {
case kCowCompressGz: {
const auto bound = compressBound(length);
@ -100,5 +100,119 @@ std::basic_string<uint8_t> CowWriter::Compress(const void* data, size_t length)
return {};
}
bool CompressWorker::CompressBlocks(const void* buffer, size_t num_blocks,
std::vector<std::basic_string<uint8_t>>* compressed_data) {
const uint8_t* iter = reinterpret_cast<const uint8_t*>(buffer);
while (num_blocks) {
auto data = Compress(iter, block_size_);
if (data.empty()) {
PLOG(ERROR) << "CompressBlocks: Compression failed";
return false;
}
if (data.size() > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "Compressed block is too large: " << data.size();
return false;
}
compressed_data->emplace_back(std::move(data));
num_blocks -= 1;
iter += block_size_;
}
return true;
}
bool CompressWorker::RunThread() {
while (true) {
// Wait for work
CompressWork blocks;
{
std::unique_lock<std::mutex> lock(lock_);
while (work_queue_.empty() && !stopped_) {
cv_.wait(lock);
}
if (stopped_) {
return true;
}
blocks = std::move(work_queue_.front());
work_queue_.pop();
}
// Compress blocks
bool ret = CompressBlocks(blocks.buffer, blocks.num_blocks, &blocks.compressed_data);
blocks.compression_status = ret;
{
std::lock_guard<std::mutex> lock(lock_);
compressed_queue_.push(std::move(blocks));
}
// Notify completion
cv_.notify_all();
if (!ret) {
LOG(ERROR) << "CompressBlocks failed";
return false;
}
}
return true;
}
void CompressWorker::EnqueueCompressBlocks(const void* buffer, size_t num_blocks) {
{
std::lock_guard<std::mutex> lock(lock_);
CompressWork blocks = {};
blocks.buffer = buffer;
blocks.num_blocks = num_blocks;
work_queue_.push(std::move(blocks));
}
cv_.notify_all();
}
bool CompressWorker::GetCompressedBuffers(std::vector<std::basic_string<uint8_t>>* compressed_buf) {
{
std::unique_lock<std::mutex> lock(lock_);
while (compressed_queue_.empty() && !stopped_) {
cv_.wait(lock);
}
if (stopped_) {
return true;
}
}
{
std::lock_guard<std::mutex> lock(lock_);
while (compressed_queue_.size() > 0) {
CompressWork blocks = std::move(compressed_queue_.front());
compressed_queue_.pop();
if (blocks.compression_status) {
compressed_buf->insert(compressed_buf->end(),
std::make_move_iterator(blocks.compressed_data.begin()),
std::make_move_iterator(blocks.compressed_data.end()));
} else {
LOG(ERROR) << "Block compression failed";
return false;
}
}
}
return true;
}
void CompressWorker::Finalize() {
{
std::unique_lock<std::mutex> lock(lock_);
stopped_ = true;
}
cv_.notify_all();
}
CompressWorker::CompressWorker(CowCompressionAlgorithm compression, uint32_t block_size)
: compression_(compression), block_size_(block_size) {}
} // namespace snapshot
} // namespace android

View file

@ -15,6 +15,7 @@
//
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <limits>
@ -22,6 +23,7 @@
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <brotli/encode.h>
#include <libsnapshot/cow_format.h>
@ -132,6 +134,46 @@ bool ICowWriter::ValidateNewBlock(uint64_t new_block) {
CowWriter::CowWriter(const CowOptions& options) : ICowWriter(options), fd_(-1) {
SetupHeaders();
SetupWriteOptions();
}
CowWriter::~CowWriter() {
for (size_t i = 0; i < compress_threads_.size(); i++) {
CompressWorker* worker = compress_threads_[i].get();
if (worker) {
worker->Finalize();
}
}
bool ret = true;
for (auto& t : threads_) {
ret = t.get() && ret;
}
if (!ret) {
LOG(ERROR) << "Compression failed";
}
compress_threads_.clear();
}
void CowWriter::SetupWriteOptions() {
num_compress_threads_ = options_.num_compress_threads;
if (!num_compress_threads_) {
num_compress_threads_ = 1;
// We prefer not to have more than two threads as the overhead of additional
// threads is far greater than cutting down compression time.
if (header_.cluster_ops &&
android::base::GetBoolProperty("ro.virtual_ab.compression.threads", false)) {
num_compress_threads_ = 2;
}
}
if (header_.cluster_ops &&
(android::base::GetBoolProperty("ro.virtual_ab.batch_writes", false) ||
options_.batch_write)) {
batch_write_ = true;
}
}
void CowWriter::SetupHeaders() {
@ -206,6 +248,42 @@ bool CowWriter::SetFd(android::base::borrowed_fd fd) {
return true;
}
void CowWriter::InitBatchWrites() {
if (batch_write_) {
cowop_vec_ = std::make_unique<struct iovec[]>(header_.cluster_ops);
data_vec_ = std::make_unique<struct iovec[]>(header_.cluster_ops);
struct iovec* cowop_ptr = cowop_vec_.get();
struct iovec* data_ptr = data_vec_.get();
for (size_t i = 0; i < header_.cluster_ops; i++) {
std::unique_ptr<CowOperation> op = std::make_unique<CowOperation>();
cowop_ptr[i].iov_base = op.get();
cowop_ptr[i].iov_len = sizeof(CowOperation);
opbuffer_vec_.push_back(std::move(op));
std::unique_ptr<uint8_t[]> buffer = std::make_unique<uint8_t[]>(header_.block_size * 2);
data_ptr[i].iov_base = buffer.get();
data_ptr[i].iov_len = header_.block_size * 2;
databuffer_vec_.push_back(std::move(buffer));
}
current_op_pos_ = next_op_pos_;
current_data_pos_ = next_data_pos_;
}
std::string batch_write = batch_write_ ? "enabled" : "disabled";
LOG(INFO) << "Batch writes: " << batch_write;
}
void CowWriter::InitWorkers() {
for (int i = 0; i < num_compress_threads_; i++) {
auto wt = std::make_unique<CompressWorker>(compression_, header_.block_size);
threads_.emplace_back(std::async(std::launch::async, &CompressWorker::RunThread, wt.get()));
compress_threads_.push_back(std::move(wt));
}
LOG(INFO) << num_compress_threads_ << " thread used for compression";
}
bool CowWriter::Initialize(unique_fd&& fd) {
owned_fd_ = std::move(fd);
return Initialize(borrowed_fd{owned_fd_});
@ -216,7 +294,13 @@ bool CowWriter::Initialize(borrowed_fd fd) {
return false;
}
return OpenForWrite();
bool ret = OpenForWrite();
if (ret) {
InitWorkers();
}
return ret;
}
bool CowWriter::InitializeAppend(android::base::unique_fd&& fd, uint64_t label) {
@ -229,7 +313,13 @@ bool CowWriter::InitializeAppend(android::base::borrowed_fd fd, uint64_t label)
return false;
}
return OpenForAppend(label);
bool ret = OpenForAppend(label);
if (ret && !compress_threads_.size()) {
InitWorkers();
}
return ret;
}
void CowWriter::InitPos() {
@ -287,6 +377,7 @@ bool CowWriter::OpenForWrite() {
}
InitPos();
InitBatchWrites();
return true;
}
@ -320,6 +411,9 @@ bool CowWriter::OpenForAppend(uint64_t label) {
PLOG(ERROR) << "lseek failed";
return false;
}
InitBatchWrites();
return EmitClusterIfNeeded();
}
@ -348,47 +442,99 @@ bool CowWriter::EmitXorBlocks(uint32_t new_block_start, const void* data, size_t
return EmitBlocks(new_block_start, data, size, old_block, offset, kCowXorOp);
}
bool CowWriter::CompressBlocks(size_t num_blocks, const void* data) {
size_t num_threads = (num_blocks == 1) ? 1 : num_compress_threads_;
size_t num_blocks_per_thread = num_blocks / num_threads;
const uint8_t* iter = reinterpret_cast<const uint8_t*>(data);
compressed_buf_.clear();
// Submit the blocks per thread. The retrieval of
// compressed buffers has to be done in the same order.
// We should not poll for completed buffers in a different order as the
// buffers are tightly coupled with block ordering.
for (size_t i = 0; i < num_threads; i++) {
CompressWorker* worker = compress_threads_[i].get();
if (i == num_threads - 1) {
num_blocks_per_thread = num_blocks;
}
worker->EnqueueCompressBlocks(iter, num_blocks_per_thread);
iter += (num_blocks_per_thread * header_.block_size);
num_blocks -= num_blocks_per_thread;
}
for (size_t i = 0; i < num_threads; i++) {
CompressWorker* worker = compress_threads_[i].get();
if (!worker->GetCompressedBuffers(&compressed_buf_)) {
return false;
}
}
return true;
}
bool CowWriter::EmitBlocks(uint64_t new_block_start, const void* data, size_t size,
uint64_t old_block, uint16_t offset, uint8_t type) {
const uint8_t* iter = reinterpret_cast<const uint8_t*>(data);
CHECK(!merge_in_progress_);
for (size_t i = 0; i < size / header_.block_size; i++) {
CowOperation op = {};
op.new_block = new_block_start + i;
op.type = type;
if (type == kCowXorOp) {
op.source = (old_block + i) * header_.block_size + offset;
} else {
op.source = next_data_pos_;
}
const uint8_t* iter = reinterpret_cast<const uint8_t*>(data);
// Update engine can potentially send 100MB of blocks at a time. We
// don't want to process all those blocks in one shot as it can
// stress the memory. Hence, process the blocks in chunks.
//
// 1024 blocks is reasonable given we will end up using max
// memory of ~4MB.
const size_t kProcessingBlocks = 1024;
size_t num_blocks = (size / header_.block_size);
size_t i = 0;
while (num_blocks) {
size_t pending_blocks = (std::min(kProcessingBlocks, num_blocks));
if (compression_) {
auto data = Compress(iter, header_.block_size);
if (data.empty()) {
PLOG(ERROR) << "AddRawBlocks: compression failed";
return false;
}
if (data.size() > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "Compressed block is too large: " << data.size() << " bytes";
return false;
}
op.compression = compression_;
op.data_length = static_cast<uint16_t>(data.size());
if (!WriteOperation(op, data.data(), data.size())) {
PLOG(ERROR) << "AddRawBlocks: write failed, bytes requested: " << size
<< ", bytes written: " << i * header_.block_size;
return false;
}
} else {
op.data_length = static_cast<uint16_t>(header_.block_size);
if (!WriteOperation(op, iter, header_.block_size)) {
PLOG(ERROR) << "AddRawBlocks: write failed";
if (!CompressBlocks(pending_blocks, iter)) {
return false;
}
buf_iter_ = compressed_buf_.begin();
CHECK(pending_blocks == compressed_buf_.size());
iter += (pending_blocks * header_.block_size);
}
iter += header_.block_size;
num_blocks -= pending_blocks;
while (i < size / header_.block_size && pending_blocks) {
CowOperation op = {};
op.new_block = new_block_start + i;
op.type = type;
if (type == kCowXorOp) {
op.source = (old_block + i) * header_.block_size + offset;
} else {
op.source = next_data_pos_;
}
if (compression_) {
auto data = std::move(*buf_iter_);
op.compression = compression_;
op.data_length = static_cast<uint16_t>(data.size());
if (!WriteOperation(op, data.data(), data.size())) {
PLOG(ERROR) << "AddRawBlocks: write failed";
return false;
}
buf_iter_++;
} else {
op.data_length = static_cast<uint16_t>(header_.block_size);
if (!WriteOperation(op, iter, header_.block_size)) {
PLOG(ERROR) << "AddRawBlocks: write failed";
return false;
}
iter += header_.block_size;
}
i += 1;
pending_blocks -= 1;
}
CHECK(pending_blocks == 0);
}
return true;
}
@ -416,7 +562,7 @@ bool CowWriter::EmitLabel(uint64_t label) {
bool CowWriter::EmitSequenceData(size_t num_ops, const uint32_t* data) {
CHECK(!merge_in_progress_);
size_t to_add = 0;
size_t max_ops = std::numeric_limits<uint16_t>::max() / sizeof(uint32_t);
size_t max_ops = (header_.block_size * 2) / sizeof(uint32_t);
while (num_ops > 0) {
CowOperation op = {};
op.type = kCowSequenceOp;
@ -461,6 +607,11 @@ static void SHA256(const void*, size_t, uint8_t[]) {
}
bool CowWriter::Finalize() {
if (!FlushCluster()) {
LOG(ERROR) << "Finalize: FlushCluster() failed";
return false;
}
auto continue_cluster_size = current_cluster_size_;
auto continue_data_size = current_data_size_;
auto continue_data_pos = next_data_pos_;
@ -525,6 +676,9 @@ bool CowWriter::Finalize() {
next_op_pos_ = continue_op_pos;
footer_.op.num_ops = continue_num_ops;
}
FlushCluster();
return Sync();
}
@ -556,6 +710,35 @@ bool CowWriter::EnsureSpaceAvailable(const uint64_t bytes_needed) const {
return true;
}
bool CowWriter::FlushCluster() {
ssize_t ret;
if (op_vec_index_) {
ret = pwritev(fd_.get(), cowop_vec_.get(), op_vec_index_, current_op_pos_);
if (ret != (op_vec_index_ * sizeof(CowOperation))) {
PLOG(ERROR) << "pwritev failed for CowOperation. Expected: "
<< (op_vec_index_ * sizeof(CowOperation));
return false;
}
}
if (data_vec_index_) {
ret = pwritev(fd_.get(), data_vec_.get(), data_vec_index_, current_data_pos_);
if (ret != total_data_written_) {
PLOG(ERROR) << "pwritev failed for data. Expected: " << total_data_written_;
return false;
}
}
total_data_written_ = 0;
op_vec_index_ = 0;
data_vec_index_ = 0;
current_op_pos_ = next_op_pos_;
current_data_pos_ = next_data_pos_;
return true;
}
bool CowWriter::WriteOperation(const CowOperation& op, const void* data, size_t size) {
if (!EnsureSpaceAvailable(next_op_pos_ + sizeof(op))) {
return false;
@ -564,14 +747,43 @@ bool CowWriter::WriteOperation(const CowOperation& op, const void* data, size_t
return false;
}
if (!android::base::WriteFullyAtOffset(fd_, reinterpret_cast<const uint8_t*>(&op), sizeof(op),
next_op_pos_)) {
return false;
}
if (data != nullptr && size > 0) {
if (!WriteRawData(data, size)) return false;
if (batch_write_) {
CowOperation* cow_op = reinterpret_cast<CowOperation*>(cowop_vec_[op_vec_index_].iov_base);
std::memcpy(cow_op, &op, sizeof(CowOperation));
op_vec_index_ += 1;
if (data != nullptr && size > 0) {
struct iovec* data_ptr = data_vec_.get();
std::memcpy(data_ptr[data_vec_index_].iov_base, data, size);
data_ptr[data_vec_index_].iov_len = size;
data_vec_index_ += 1;
total_data_written_ += size;
}
} else {
if (lseek(fd_.get(), next_op_pos_, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek failed for writing operation.";
return false;
}
if (!android::base::WriteFully(fd_, reinterpret_cast<const uint8_t*>(&op), sizeof(op))) {
return false;
}
if (data != nullptr && size > 0) {
if (!WriteRawData(data, size)) return false;
}
}
AddOperation(op);
if (batch_write_) {
if (op_vec_index_ == header_.cluster_ops || data_vec_index_ == header_.cluster_ops ||
op.type == kCowLabelOp || op.type == kCowClusterOp) {
if (!FlushCluster()) {
LOG(ERROR) << "Failed to flush cluster data";
return false;
}
}
}
return EmitClusterIfNeeded();
}