Merge "libsnapshot:snapuserd: Multithreading support"

This commit is contained in:
Akilesh Kailash 2021-03-11 00:51:20 +00:00 committed by Gerrit Code Review
commit bd83b72bc8
9 changed files with 849 additions and 628 deletions

View file

@ -416,6 +416,7 @@ cc_defaults {
"snapuserd_server.cpp",
"snapuserd.cpp",
"snapuserd_daemon.cpp",
"snapuserd_worker.cpp",
],
cflags: [
@ -554,6 +555,7 @@ cc_test {
srcs: [
"cow_snapuserd_test.cpp",
"snapuserd.cpp",
"snapuserd_worker.cpp",
],
cflags: [
"-Wall",

View file

@ -42,6 +42,29 @@ static void SHA256(const void*, size_t, uint8_t[]) {
#endif
}
bool CowReader::InitForMerge(android::base::unique_fd&& fd) {
owned_fd_ = std::move(fd);
fd_ = owned_fd_.get();
auto pos = lseek(fd_.get(), 0, SEEK_END);
if (pos < 0) {
PLOG(ERROR) << "lseek end failed";
return false;
}
fd_size_ = pos;
if (lseek(fd_.get(), 0, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek header failed";
return false;
}
if (!android::base::ReadFully(fd_, &header_, sizeof(header_))) {
PLOG(ERROR) << "read header failed";
return false;
}
return true;
}
bool CowReader::Parse(android::base::unique_fd&& fd, std::optional<uint64_t> label) {
owned_fd_ = std::move(fd);
return Parse(android::base::borrowed_fd{owned_fd_}, label);

View file

@ -116,12 +116,15 @@ class ICowOpReverseIter {
class CowReader : public ICowReader {
public:
CowReader();
~CowReader() { owned_fd_ = {}; }
// Parse the COW, optionally, up to the given label. If no label is
// specified, the COW must have an intact footer.
bool Parse(android::base::unique_fd&& fd, std::optional<uint64_t> label = {});
bool Parse(android::base::borrowed_fd fd, std::optional<uint64_t> label = {});
bool InitForMerge(android::base::unique_fd&& fd);
bool GetHeader(CowHeader* header) override;
bool GetFooter(CowFooter* footer) override;
@ -146,6 +149,8 @@ class CowReader : public ICowReader {
uint64_t total_data_ops() { return total_data_ops_; }
void CloseCowFd() { owned_fd_ = {}; }
private:
bool ParseOps(std::optional<uint64_t> label);

View file

@ -1265,7 +1265,7 @@ static bool DeleteDmDevice(const std::string& name, const std::chrono::milliseco
LOG(ERROR) << "DeleteDevice timeout: " << name;
return false;
}
std::this_thread::sleep_for(250ms);
std::this_thread::sleep_for(400ms);
}
return true;

View file

@ -32,41 +32,6 @@ using android::base::unique_fd;
#define SNAP_LOG(level) LOG(level) << misc_name_ << ": "
#define SNAP_PLOG(level) PLOG(level) << misc_name_ << ": "
static constexpr size_t PAYLOAD_SIZE = (1UL << 20);
static_assert(PAYLOAD_SIZE >= BLOCK_SZ);
void BufferSink::Initialize(size_t size) {
buffer_size_ = size;
buffer_offset_ = 0;
buffer_ = std::make_unique<uint8_t[]>(size);
}
void* BufferSink::GetPayloadBuffer(size_t size) {
if ((buffer_size_ - buffer_offset_) < size) return nullptr;
char* buffer = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_message* msg = (struct dm_user_message*)(&(buffer[0]));
return (char*)msg->payload.buf + buffer_offset_;
}
void* BufferSink::GetBuffer(size_t requested, size_t* actual) {
void* buf = GetPayloadBuffer(requested);
if (!buf) {
*actual = 0;
return nullptr;
}
*actual = requested;
return buf;
}
struct dm_user_header* BufferSink::GetHeaderPtr() {
CHECK(sizeof(struct dm_user_header) <= buffer_size_);
char* buf = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_header* header = (struct dm_user_header*)(&(buf[0]));
return header;
}
Snapuserd::Snapuserd(const std::string& misc_name, const std::string& cow_device,
const std::string& backing_device) {
misc_name_ = misc_name;
@ -75,356 +40,32 @@ Snapuserd::Snapuserd(const std::string& misc_name, const std::string& cow_device
control_device_ = "/dev/dm-user/" + misc_name;
}
// Construct kernel COW header in memory
// This header will be in sector 0. The IO
// request will always be 4k. After constructing
// the header, zero out the remaining block.
void Snapuserd::ConstructKernelCowHeader() {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
bool Snapuserd::InitializeWorkers() {
for (int i = 0; i < NUM_THREADS_PER_PARTITION; i++) {
std::unique_ptr<WorkerThread> wt = std::make_unique<WorkerThread>(
cow_device_, backing_store_device_, control_device_, misc_name_, GetSharedPtr());
memset(buffer, 0, BLOCK_SZ);
struct disk_header* dh = reinterpret_cast<struct disk_header*>(buffer);
dh->magic = SNAP_MAGIC;
dh->valid = SNAPSHOT_VALID;
dh->version = SNAPSHOT_DISK_VERSION;
dh->chunk_size = CHUNK_SIZE;
}
// Start the replace operation. This will read the
// internal COW format and if the block is compressed,
// it will be de-compressed.
bool Snapuserd::ProcessReplaceOp(const CowOperation* cow_op) {
if (!reader_->ReadData(*cow_op, &bufsink_)) {
SNAP_LOG(ERROR) << "ProcessReplaceOp failed for block " << cow_op->new_block;
return false;
worker_threads_.push_back(std::move(wt));
}
return true;
}
// Start the copy operation. This will read the backing
// block device which is represented by cow_op->source.
bool Snapuserd::ProcessCopyOp(const CowOperation* cow_op) {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
bool Snapuserd::CommitMerge(int num_merge_ops) {
{
std::lock_guard<std::mutex> lock(lock_);
CowHeader header;
// Issue a single 4K IO. However, this can be optimized
// if the successive blocks are contiguous.
if (!android::base::ReadFullyAtOffset(backing_store_fd_, buffer, BLOCK_SZ,
cow_op->source * BLOCK_SZ)) {
SNAP_PLOG(ERROR) << "Copy-op failed. Read from backing store: " << backing_store_device_
<< "at block :" << cow_op->source;
return false;
}
return true;
}
bool Snapuserd::ProcessZeroOp() {
// Zero out the entire block
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
memset(buffer, 0, BLOCK_SZ);
return true;
}
bool Snapuserd::ProcessCowOp(const CowOperation* cow_op) {
CHECK(cow_op != nullptr);
switch (cow_op->type) {
case kCowReplaceOp: {
return ProcessReplaceOp(cow_op);
reader_->GetHeader(&header);
header.num_merge_ops += num_merge_ops;
reader_->UpdateMergeProgress(num_merge_ops);
if (!writer_->CommitMerge(num_merge_ops)) {
SNAP_LOG(ERROR) << "CommitMerge failed... merged_ops_cur_iter: " << num_merge_ops
<< " Total-merged-ops: " << header.num_merge_ops;
return false;
}
case kCowZeroOp: {
return ProcessZeroOp();
}
case kCowCopyOp: {
return ProcessCopyOp(cow_op);
}
default: {
SNAP_LOG(ERROR) << "Unknown operation-type found: " << cow_op->type;
}
}
return false;
}
int Snapuserd::ReadUnalignedSector(sector_t sector, size_t size,
std::map<sector_t, const CowOperation*>::iterator& it) {
size_t skip_sector_size = 0;
SNAP_LOG(DEBUG) << "ReadUnalignedSector: sector " << sector << " size: " << size
<< " Aligned sector: " << it->second;
if (!ProcessCowOp(it->second)) {
SNAP_LOG(ERROR) << "ReadUnalignedSector: " << sector << " failed of size: " << size;
return -1;
merge_initiated_ = true;
}
int num_sectors_skip = sector - it->first;
if (num_sectors_skip > 0) {
skip_sector_size = num_sectors_skip << SECTOR_SHIFT;
char* buffer = reinterpret_cast<char*>(bufsink_.GetBufPtr());
struct dm_user_message* msg = (struct dm_user_message*)(&(buffer[0]));
memmove(msg->payload.buf, (char*)msg->payload.buf + skip_sector_size,
(BLOCK_SZ - skip_sector_size));
}
bufsink_.ResetBufferOffset();
return std::min(size, (BLOCK_SZ - skip_sector_size));
}
/*
* Read the data for a given COW Operation.
*
* Kernel can issue IO at a sector granularity.
* Hence, an IO may end up with reading partial
* data from a COW operation or we may also
* end up with interspersed request between
* two COW operations.
*
*/
int Snapuserd::ReadData(sector_t sector, size_t size) {
/*
* chunk_map stores COW operation at 4k granularity.
* If the requested IO with the sector falls on the 4k
* boundary, then we can read the COW op directly without
* any issue.
*
* However, if the requested sector is not 4K aligned,
* then we will have the find the nearest COW operation
* and chop the 4K block to fetch the requested sector.
*/
std::map<sector_t, const CowOperation*>::iterator it = chunk_map_.find(sector);
if (it == chunk_map_.end()) {
it = chunk_map_.lower_bound(sector);
if (it != chunk_map_.begin()) {
--it;
}
/*
* If the IO is spanned between two COW operations,
* split the IO into two parts:
*
* 1: Read the first part from the single COW op
* 2: Read the second part from the next COW op.
*
* Ex: Let's say we have a 1024 Bytes IO request.
*
* 0 COW OP-1 4096 COW OP-2 8192
* |******************|*******************|
* |*****|*****|
* 3584 4608
* <- 1024B - >
*
* We have two COW operations which are 4k blocks.
* The IO is requested for 1024 Bytes which are spanned
* between two COW operations. We will split this IO
* into two parts:
*
* 1: IO of size 512B from offset 3584 bytes (COW OP-1)
* 2: IO of size 512B from offset 4096 bytes (COW OP-2)
*/
return ReadUnalignedSector(sector, size, it);
}
int num_ops = DIV_ROUND_UP(size, BLOCK_SZ);
while (num_ops) {
if (!ProcessCowOp(it->second)) {
return -1;
}
num_ops -= 1;
it++;
// Update the buffer offset
bufsink_.UpdateBufferOffset(BLOCK_SZ);
SNAP_LOG(DEBUG) << "ReadData at sector: " << sector << " size: " << size;
}
// Reset the buffer offset
bufsink_.ResetBufferOffset();
return size;
}
/*
* dm-snap does prefetch reads while reading disk-exceptions.
* By default, prefetch value is set to 12; this means that
* dm-snap will issue 12 areas wherein each area is a 4k page
* of disk-exceptions.
*
* If during prefetch, if the chunk-id seen is beyond the
* actual number of metadata page, fill the buffer with zero.
* When dm-snap starts parsing the buffer, it will stop
* reading metadata page once the buffer content is zero.
*/
bool Snapuserd::ZerofillDiskExceptions(size_t read_size) {
size_t size = exceptions_per_area_ * sizeof(struct disk_exception);
if (read_size > size) {
return false;
}
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memset(buffer, 0, size);
return true;
}
/*
* A disk exception is a simple mapping of old_chunk to new_chunk.
* When dm-snapshot device is created, kernel requests these mapping.
*
* Each disk exception is of size 16 bytes. Thus a single 4k page can
* have:
*
* exceptions_per_area_ = 4096/16 = 256. This entire 4k page
* is considered a metadata page and it is represented by chunk ID.
*
* Convert the chunk ID to index into the vector which gives us
* the metadata page.
*/
bool Snapuserd::ReadDiskExceptions(chunk_t chunk, size_t read_size) {
uint32_t stride = exceptions_per_area_ + 1;
size_t size;
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
if (divresult.quot < vec_.size()) {
size = exceptions_per_area_ * sizeof(struct disk_exception);
CHECK(read_size == size);
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memcpy(buffer, vec_[divresult.quot].get(), size);
} else {
return ZerofillDiskExceptions(read_size);
}
return true;
}
loff_t Snapuserd::GetMergeStartOffset(void* merged_buffer, void* unmerged_buffer,
int* unmerged_exceptions) {
loff_t offset = 0;
*unmerged_exceptions = 0;
while (*unmerged_exceptions <= exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
// Unmerged op by the kernel
if (merged_de->old_chunk != 0 || merged_de->new_chunk != 0) {
CHECK(merged_de->old_chunk == cow_de->old_chunk);
CHECK(merged_de->new_chunk == cow_de->new_chunk);
offset += sizeof(struct disk_exception);
*unmerged_exceptions += 1;
continue;
}
break;
}
CHECK(!(*unmerged_exceptions == exceptions_per_area_));
SNAP_LOG(DEBUG) << "Unmerged_Exceptions: " << *unmerged_exceptions << " Offset: " << offset;
return offset;
}
int Snapuserd::GetNumberOfMergedOps(void* merged_buffer, void* unmerged_buffer, loff_t offset,
int unmerged_exceptions) {
int merged_ops_cur_iter = 0;
// Find the operations which are merged in this cycle.
while ((unmerged_exceptions + merged_ops_cur_iter) < exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
CHECK(merged_de->new_chunk == 0);
CHECK(merged_de->old_chunk == 0);
if (cow_de->new_chunk != 0) {
merged_ops_cur_iter += 1;
offset += sizeof(struct disk_exception);
const CowOperation* cow_op = chunk_map_[ChunkToSector(cow_de->new_chunk)];
CHECK(cow_op != nullptr);
CHECK(cow_op->new_block == cow_de->old_chunk);
// zero out to indicate that operation is merged.
cow_de->old_chunk = 0;
cow_de->new_chunk = 0;
} else if (cow_de->old_chunk == 0) {
// Already merged op in previous iteration or
// This could also represent a partially filled area.
//
// If the op was merged in previous cycle, we don't have
// to count them.
CHECK(cow_de->new_chunk == 0);
break;
} else {
SNAP_LOG(ERROR) << "Error in merge operation. Found invalid metadata: "
<< " merged_de-old-chunk: " << merged_de->old_chunk
<< " merged_de-new-chunk: " << merged_de->new_chunk
<< " cow_de-old-chunk: " << cow_de->old_chunk
<< " cow_de-new-chunk: " << cow_de->new_chunk
<< " unmerged_exceptions: " << unmerged_exceptions
<< " merged_ops_cur_iter: " << merged_ops_cur_iter
<< " offset: " << offset;
return -1;
}
}
return merged_ops_cur_iter;
}
bool Snapuserd::ProcessMergeComplete(chunk_t chunk, void* buffer) {
uint32_t stride = exceptions_per_area_ + 1;
CowHeader header;
if (!reader_->GetHeader(&header)) {
SNAP_LOG(ERROR) << "Failed to get header";
return false;
}
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
CHECK(divresult.quot < vec_.size());
SNAP_LOG(DEBUG) << "ProcessMergeComplete: chunk: " << chunk
<< " Metadata-Index: " << divresult.quot;
int unmerged_exceptions = 0;
loff_t offset = GetMergeStartOffset(buffer, vec_[divresult.quot].get(), &unmerged_exceptions);
int merged_ops_cur_iter =
GetNumberOfMergedOps(buffer, vec_[divresult.quot].get(), offset, unmerged_exceptions);
// There should be at least one operation merged in this cycle
CHECK(merged_ops_cur_iter > 0);
header.num_merge_ops += merged_ops_cur_iter;
reader_->UpdateMergeProgress(merged_ops_cur_iter);
if (!writer_->CommitMerge(merged_ops_cur_iter)) {
SNAP_LOG(ERROR) << "CommitMerge failed... merged_ops_cur_iter: " << merged_ops_cur_iter;
return false;
}
SNAP_LOG(DEBUG) << "Merge success: " << merged_ops_cur_iter << "chunk: " << chunk;
merge_initiated_ = true;
return true;
}
@ -836,7 +477,6 @@ bool Snapuserd::ReadMetadata() {
// Total number of sectors required for creating dm-user device
num_sectors_ = ChunkToSector(data_chunk_id);
metadata_read_done_ = true;
merge_initiated_ = false;
return true;
}
@ -850,37 +490,6 @@ void MyLogger(android::base::LogId, android::base::LogSeverity severity, const c
}
}
// Read Header from dm-user misc device. This gives
// us the sector number for which IO is issued by dm-snapshot device
bool Snapuserd::ReadDmUserHeader() {
if (!android::base::ReadFully(ctrl_fd_, bufsink_.GetBufPtr(), sizeof(struct dm_user_header))) {
SNAP_PLOG(ERROR) << "Control-read failed";
return false;
}
return true;
}
// Send the payload/data back to dm-user misc device.
bool Snapuserd::WriteDmUserPayload(size_t size) {
if (!android::base::WriteFully(ctrl_fd_, bufsink_.GetBufPtr(),
sizeof(struct dm_user_header) + size)) {
SNAP_PLOG(ERROR) << "Write to dm-user failed size: " << size;
return false;
}
return true;
}
bool Snapuserd::ReadDmUserPayload(void* buffer, size_t size) {
if (!android::base::ReadFully(ctrl_fd_, buffer, size)) {
SNAP_PLOG(ERROR) << "ReadDmUserPayload failed size: " << size;
return false;
}
return true;
}
bool Snapuserd::InitCowDevice() {
cow_fd_.reset(open(cow_device_.c_str(), O_RDWR));
if (cow_fd_ < 0) {
@ -888,186 +497,26 @@ bool Snapuserd::InitCowDevice() {
return false;
}
// Allocate the buffer which is used to communicate between
// daemon and dm-user. The buffer comprises of header and a fixed payload.
// If the dm-user requests a big IO, the IO will be broken into chunks
// of PAYLOAD_SIZE.
size_t buf_size = sizeof(struct dm_user_header) + PAYLOAD_SIZE;
bufsink_.Initialize(buf_size);
return ReadMetadata();
}
bool Snapuserd::InitBackingAndControlDevice() {
backing_store_fd_.reset(open(backing_store_device_.c_str(), O_RDONLY));
if (backing_store_fd_ < 0) {
SNAP_PLOG(ERROR) << "Open Failed: " << backing_store_device_;
return false;
/*
* Entry point to launch worker threads
*/
bool Snapuserd::Start() {
std::vector<std::future<bool>> threads;
for (int i = 0; i < worker_threads_.size(); i++) {
threads.emplace_back(
std::async(std::launch::async, &WorkerThread::RunThread, worker_threads_[i].get()));
}
ctrl_fd_.reset(open(control_device_.c_str(), O_RDWR));
if (ctrl_fd_ < 0) {
SNAP_PLOG(ERROR) << "Unable to open " << control_device_;
return false;
bool ret = true;
for (auto& t : threads) {
ret = t.get() && ret;
}
return true;
}
bool Snapuserd::DmuserWriteRequest() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
// device mapper has the capability to allow
// targets to flush the cache when writes are completed. This
// is controlled by each target by a flag "flush_supported".
// This flag is set by dm-user. When flush is supported,
// a number of zero-length bio's will be submitted to
// the target for the purpose of flushing cache. It is the
// responsibility of the target driver - which is dm-user in this
// case, to remap these bio's to the underlying device. Since,
// there is no underlying device for dm-user, this zero length
// bio's gets routed to daemon.
//
// Flush operations are generated post merge by dm-snap by having
// REQ_PREFLUSH flag set. Snapuser daemon doesn't have anything
// to flush per se; hence, just respond back with a success message.
if (header->sector == 0) {
CHECK(header->len == 0);
header->type = DM_USER_RESP_SUCCESS;
if (!WriteDmUserPayload(0)) {
return false;
}
return true;
}
size_t remaining_size = header->len;
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
CHECK(read_size == BLOCK_SZ);
CHECK(header->sector > 0);
chunk_t chunk = SectorToChunk(header->sector);
CHECK(chunk_map_.find(header->sector) == chunk_map_.end());
void* buffer = bufsink_.GetPayloadBuffer(read_size);
CHECK(buffer != nullptr);
header->type = DM_USER_RESP_SUCCESS;
if (!ReadDmUserPayload(buffer, read_size)) {
SNAP_LOG(ERROR) << "ReadDmUserPayload failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
}
if (header->type == DM_USER_RESP_SUCCESS && !ProcessMergeComplete(chunk, buffer)) {
SNAP_LOG(ERROR) << "ProcessMergeComplete failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ProcessMergeComplete success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
if (!WriteDmUserPayload(0)) {
return false;
}
return true;
}
bool Snapuserd::DmuserReadRequest() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
size_t remaining_size = header->len;
loff_t offset = 0;
sector_t sector = header->sector;
do {
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
int ret = read_size;
header->type = DM_USER_RESP_SUCCESS;
chunk_t chunk = SectorToChunk(header->sector);
// Request to sector 0 is always for kernel
// representation of COW header. This IO should be only
// once during dm-snapshot device creation. We should
// never see multiple IO requests. Additionally this IO
// will always be a single 4k.
if (header->sector == 0) {
CHECK(metadata_read_done_ == true);
CHECK(read_size == BLOCK_SZ);
ConstructKernelCowHeader();
SNAP_LOG(DEBUG) << "Kernel header constructed";
} else {
if (!offset && (read_size == BLOCK_SZ) &&
chunk_map_.find(header->sector) == chunk_map_.end()) {
if (!ReadDiskExceptions(chunk, read_size)) {
SNAP_LOG(ERROR) << "ReadDiskExceptions failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ReadDiskExceptions success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
} else {
chunk_t num_sectors_read = (offset >> SECTOR_SHIFT);
ret = ReadData(sector + num_sectors_read, read_size);
if (ret < 0) {
SNAP_LOG(ERROR) << "ReadData failed for chunk id: " << chunk
<< " Sector: " << (sector + num_sectors_read)
<< " size: " << read_size << " header-len: " << header->len;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ReadData success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
}
}
// Daemon will not be terminated if there is any error. We will
// just send the error back to dm-user.
if (!WriteDmUserPayload(ret)) {
return false;
}
remaining_size -= ret;
offset += ret;
} while (remaining_size > 0);
return true;
}
bool Snapuserd::Run() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
bufsink_.Clear();
if (!ReadDmUserHeader()) {
SNAP_LOG(ERROR) << "ReadDmUserHeader failed";
return false;
}
SNAP_LOG(DEBUG) << "msg->seq: " << std::hex << header->seq;
SNAP_LOG(DEBUG) << "msg->type: " << std::hex << header->type;
SNAP_LOG(DEBUG) << "msg->flags: " << std::hex << header->flags;
SNAP_LOG(DEBUG) << "msg->sector: " << std::hex << header->sector;
SNAP_LOG(DEBUG) << "msg->len: " << std::hex << header->len;
switch (header->type) {
case DM_USER_REQ_MAP_READ: {
if (!DmuserReadRequest()) {
return false;
}
break;
}
case DM_USER_REQ_MAP_WRITE: {
if (!DmuserWriteRequest()) {
return false;
}
break;
}
}
return true;
return ret;
}
} // namespace snapshot

View file

@ -18,13 +18,17 @@
#include <stdint.h>
#include <stdlib.h>
#include <bitset>
#include <csignal>
#include <cstring>
#include <future>
#include <iostream>
#include <limits>
#include <map>
#include <mutex>
#include <string>
#include <thread>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
@ -40,6 +44,17 @@ namespace android {
namespace snapshot {
using android::base::unique_fd;
using namespace std::chrono_literals;
static constexpr size_t PAYLOAD_SIZE = (1UL << 20);
static_assert(PAYLOAD_SIZE >= BLOCK_SZ);
/*
* With 4 threads, we get optimal performance
* when update_verifier reads the partition during
* boot.
*/
static constexpr int NUM_THREADS_PER_PARTITION = 4;
class BufferSink : public IByteSink {
public:
@ -59,53 +74,106 @@ class BufferSink : public IByteSink {
size_t buffer_size_;
};
class Snapuserd final {
class Snapuserd;
class WorkerThread {
public:
Snapuserd(const std::string& misc_name, const std::string& cow_device,
const std::string& backing_device);
bool InitBackingAndControlDevice();
bool InitCowDevice();
bool Run();
const std::string& GetControlDevicePath() { return control_device_; }
const std::string& GetMiscName() { return misc_name_; }
uint64_t GetNumSectors() { return num_sectors_; }
bool IsAttached() const { return ctrl_fd_ >= 0; }
void CheckMergeCompletionStatus();
void CloseFds() {
ctrl_fd_ = {};
cow_fd_ = {};
backing_store_fd_ = {};
}
size_t GetMetadataAreaSize() { return vec_.size(); }
void* GetExceptionBuffer(size_t i) { return vec_[i].get(); }
WorkerThread(const std::string& cow_device, const std::string& backing_device,
const std::string& control_device, const std::string& misc_name,
std::shared_ptr<Snapuserd> snapuserd);
bool RunThread();
private:
// Initialization
void InitializeBufsink();
bool InitializeFds();
bool InitReader();
void CloseFds() {
ctrl_fd_ = {};
backing_store_fd_ = {};
}
// Functions interacting with dm-user
bool ReadDmUserHeader();
bool DmuserReadRequest();
bool DmuserWriteRequest();
bool ReadDmUserHeader();
bool ReadDmUserPayload(void* buffer, size_t size);
bool WriteDmUserPayload(size_t size);
void ConstructKernelCowHeader();
bool ReadMetadata();
bool ZerofillDiskExceptions(size_t read_size);
bool ReadDiskExceptions(chunk_t chunk, size_t size);
bool ZerofillDiskExceptions(size_t read_size);
void ConstructKernelCowHeader();
// IO Path
bool ProcessIORequest();
int ReadData(sector_t sector, size_t size);
int ReadUnalignedSector(sector_t sector, size_t size,
std::map<sector_t, const CowOperation*>::iterator& it);
int ReadData(sector_t sector, size_t size);
bool IsChunkIdMetadata(chunk_t chunk);
chunk_t GetNextAllocatableChunkId(chunk_t chunk_id);
// Processing COW operations
bool ProcessCowOp(const CowOperation* cow_op);
bool ProcessReplaceOp(const CowOperation* cow_op);
bool ProcessCopyOp(const CowOperation* cow_op);
bool ProcessZeroOp();
// Merge related functions
bool ProcessMergeComplete(chunk_t chunk, void* buffer);
loff_t GetMergeStartOffset(void* merged_buffer, void* unmerged_buffer,
int* unmerged_exceptions);
int GetNumberOfMergedOps(void* merged_buffer, void* unmerged_buffer, loff_t offset,
int unmerged_exceptions);
bool ProcessMergeComplete(chunk_t chunk, void* buffer);
sector_t ChunkToSector(chunk_t chunk) { return chunk << CHUNK_SHIFT; }
chunk_t SectorToChunk(sector_t sector) { return sector >> CHUNK_SHIFT; }
std::unique_ptr<CowReader> reader_;
BufferSink bufsink_;
std::string cow_device_;
std::string backing_store_device_;
std::string control_device_;
std::string misc_name_;
unique_fd cow_fd_;
unique_fd backing_store_fd_;
unique_fd ctrl_fd_;
std::shared_ptr<Snapuserd> snapuserd_;
uint32_t exceptions_per_area_;
};
class Snapuserd : public std::enable_shared_from_this<Snapuserd> {
public:
Snapuserd(const std::string& misc_name, const std::string& cow_device,
const std::string& backing_device);
bool InitCowDevice();
bool Start();
const std::string& GetControlDevicePath() { return control_device_; }
const std::string& GetMiscName() { return misc_name_; }
uint64_t GetNumSectors() { return num_sectors_; }
bool IsAttached() const { return attached_; }
void AttachControlDevice() { attached_ = true; }
void CheckMergeCompletionStatus();
bool CommitMerge(int num_merge_ops);
void CloseFds() { cow_fd_ = {}; }
size_t GetMetadataAreaSize() { return vec_.size(); }
void* GetExceptionBuffer(size_t i) { return vec_[i].get(); }
bool InitializeWorkers();
std::shared_ptr<Snapuserd> GetSharedPtr() { return shared_from_this(); }
std::map<sector_t, const CowOperation*>& GetChunkMap() { return chunk_map_; }
const std::vector<std::unique_ptr<uint8_t[]>>& GetMetadataVec() const { return vec_; }
private:
std::vector<std::unique_ptr<WorkerThread>> worker_threads_;
bool ReadMetadata();
bool IsChunkIdMetadata(chunk_t chunk);
chunk_t GetNextAllocatableChunkId(chunk_t chunk_id);
sector_t ChunkToSector(chunk_t chunk) { return chunk << CHUNK_SHIFT; }
chunk_t SectorToChunk(sector_t sector) { return sector >> CHUNK_SHIFT; }
bool IsBlockAligned(int read_size) { return ((read_size & (BLOCK_SZ - 1)) == 0); }
@ -116,8 +184,6 @@ class Snapuserd final {
std::string misc_name_;
unique_fd cow_fd_;
unique_fd backing_store_fd_;
unique_fd ctrl_fd_;
uint32_t exceptions_per_area_;
uint64_t num_sectors_;
@ -141,9 +207,10 @@ class Snapuserd final {
// in the chunk_map to find the nearest COW op.
std::map<sector_t, const CowOperation*> chunk_map_;
bool metadata_read_done_ = false;
std::mutex lock_;
bool merge_initiated_ = false;
BufferSink bufsink_;
bool attached_ = false;
};
} // namespace snapshot

View file

@ -77,8 +77,8 @@ void SnapuserdServer::ShutdownThreads() {
JoinAllThreads();
}
DmUserHandler::DmUserHandler(std::unique_ptr<Snapuserd>&& snapuserd)
: snapuserd_(std::move(snapuserd)), misc_name_(snapuserd_->GetMiscName()) {}
DmUserHandler::DmUserHandler(std::shared_ptr<Snapuserd> snapuserd)
: snapuserd_(snapuserd), misc_name_(snapuserd_->GetMiscName()) {}
bool SnapuserdServer::Sendmsg(android::base::borrowed_fd fd, const std::string& msg) {
ssize_t ret = TEMP_FAILURE_RETRY(send(fd.get(), msg.data(), msg.size(), 0));
@ -204,10 +204,8 @@ bool SnapuserdServer::Receivemsg(android::base::borrowed_fd fd, const std::strin
void SnapuserdServer::RunThread(std::shared_ptr<DmUserHandler> handler) {
LOG(INFO) << "Entering thread for handler: " << handler->misc_name();
while (!StopRequested()) {
if (!handler->snapuserd()->Run()) {
break;
}
if (!handler->snapuserd()->Start()) {
LOG(ERROR) << " Failed to launch all worker threads";
}
handler->snapuserd()->CloseFds();
@ -349,13 +347,18 @@ void SnapuserdServer::Interrupt() {
std::shared_ptr<DmUserHandler> SnapuserdServer::AddHandler(const std::string& misc_name,
const std::string& cow_device_path,
const std::string& backing_device) {
auto snapuserd = std::make_unique<Snapuserd>(misc_name, cow_device_path, backing_device);
auto snapuserd = std::make_shared<Snapuserd>(misc_name, cow_device_path, backing_device);
if (!snapuserd->InitCowDevice()) {
LOG(ERROR) << "Failed to initialize Snapuserd";
return nullptr;
}
auto handler = std::make_shared<DmUserHandler>(std::move(snapuserd));
if (!snapuserd->InitializeWorkers()) {
LOG(ERROR) << "Failed to initialize workers";
return nullptr;
}
auto handler = std::make_shared<DmUserHandler>(snapuserd);
{
std::lock_guard<std::mutex> lock(lock_);
if (FindHandler(&lock, misc_name) != dm_users_.end()) {
@ -370,10 +373,7 @@ std::shared_ptr<DmUserHandler> SnapuserdServer::AddHandler(const std::string& mi
bool SnapuserdServer::StartHandler(const std::shared_ptr<DmUserHandler>& handler) {
CHECK(!handler->snapuserd()->IsAttached());
if (!handler->snapuserd()->InitBackingAndControlDevice()) {
LOG(ERROR) << "Failed to initialize control device: " << handler->misc_name();
return false;
}
handler->snapuserd()->AttachControlDevice();
handler->thread() = std::thread(std::bind(&SnapuserdServer::RunThread, this, handler));
return true;

View file

@ -47,17 +47,17 @@ enum class DaemonOperations {
class DmUserHandler {
public:
explicit DmUserHandler(std::unique_ptr<Snapuserd>&& snapuserd);
explicit DmUserHandler(std::shared_ptr<Snapuserd> snapuserd);
void FreeResources() { snapuserd_ = nullptr; }
const std::unique_ptr<Snapuserd>& snapuserd() const { return snapuserd_; }
const std::shared_ptr<Snapuserd>& snapuserd() const { return snapuserd_; }
std::thread& thread() { return thread_; }
const std::string& misc_name() const { return misc_name_; }
private:
std::thread thread_;
std::unique_ptr<Snapuserd> snapuserd_;
std::shared_ptr<Snapuserd> snapuserd_;
std::string misc_name_;
};

View file

@ -0,0 +1,675 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "snapuserd.h"
#include <csignal>
#include <optional>
#include <set>
#include <libsnapshot/snapuserd_client.h>
namespace android {
namespace snapshot {
using namespace android;
using namespace android::dm;
using android::base::unique_fd;
#define SNAP_LOG(level) LOG(level) << misc_name_ << ": "
#define SNAP_PLOG(level) PLOG(level) << misc_name_ << ": "
void BufferSink::Initialize(size_t size) {
buffer_size_ = size;
buffer_offset_ = 0;
buffer_ = std::make_unique<uint8_t[]>(size);
}
void* BufferSink::GetPayloadBuffer(size_t size) {
if ((buffer_size_ - buffer_offset_) < size) return nullptr;
char* buffer = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_message* msg = (struct dm_user_message*)(&(buffer[0]));
return (char*)msg->payload.buf + buffer_offset_;
}
void* BufferSink::GetBuffer(size_t requested, size_t* actual) {
void* buf = GetPayloadBuffer(requested);
if (!buf) {
*actual = 0;
return nullptr;
}
*actual = requested;
return buf;
}
struct dm_user_header* BufferSink::GetHeaderPtr() {
CHECK(sizeof(struct dm_user_header) <= buffer_size_);
char* buf = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_header* header = (struct dm_user_header*)(&(buf[0]));
return header;
}
WorkerThread::WorkerThread(const std::string& cow_device, const std::string& backing_device,
const std::string& control_device, const std::string& misc_name,
std::shared_ptr<Snapuserd> snapuserd) {
cow_device_ = cow_device;
backing_store_device_ = backing_device;
control_device_ = control_device;
misc_name_ = misc_name;
snapuserd_ = snapuserd;
exceptions_per_area_ = (CHUNK_SIZE << SECTOR_SHIFT) / sizeof(struct disk_exception);
}
bool WorkerThread::InitializeFds() {
backing_store_fd_.reset(open(backing_store_device_.c_str(), O_RDONLY));
if (backing_store_fd_ < 0) {
SNAP_PLOG(ERROR) << "Open Failed: " << backing_store_device_;
return false;
}
cow_fd_.reset(open(cow_device_.c_str(), O_RDWR));
if (cow_fd_ < 0) {
SNAP_PLOG(ERROR) << "Open Failed: " << cow_device_;
return false;
}
ctrl_fd_.reset(open(control_device_.c_str(), O_RDWR));
if (ctrl_fd_ < 0) {
SNAP_PLOG(ERROR) << "Unable to open " << control_device_;
return false;
}
return true;
}
bool WorkerThread::InitReader() {
reader_ = std::make_unique<CowReader>();
if (!reader_->InitForMerge(std::move(cow_fd_))) {
return false;
}
return true;
}
// Construct kernel COW header in memory
// This header will be in sector 0. The IO
// request will always be 4k. After constructing
// the header, zero out the remaining block.
void WorkerThread::ConstructKernelCowHeader() {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
memset(buffer, 0, BLOCK_SZ);
struct disk_header* dh = reinterpret_cast<struct disk_header*>(buffer);
dh->magic = SNAP_MAGIC;
dh->valid = SNAPSHOT_VALID;
dh->version = SNAPSHOT_DISK_VERSION;
dh->chunk_size = CHUNK_SIZE;
}
// Start the replace operation. This will read the
// internal COW format and if the block is compressed,
// it will be de-compressed.
bool WorkerThread::ProcessReplaceOp(const CowOperation* cow_op) {
if (!reader_->ReadData(*cow_op, &bufsink_)) {
SNAP_LOG(ERROR) << "ProcessReplaceOp failed for block " << cow_op->new_block;
return false;
}
return true;
}
// Start the copy operation. This will read the backing
// block device which is represented by cow_op->source.
bool WorkerThread::ProcessCopyOp(const CowOperation* cow_op) {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
// Issue a single 4K IO. However, this can be optimized
// if the successive blocks are contiguous.
if (!android::base::ReadFullyAtOffset(backing_store_fd_, buffer, BLOCK_SZ,
cow_op->source * BLOCK_SZ)) {
SNAP_PLOG(ERROR) << "Copy-op failed. Read from backing store: " << backing_store_device_
<< "at block :" << cow_op->source;
return false;
}
return true;
}
bool WorkerThread::ProcessZeroOp() {
// Zero out the entire block
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SZ);
CHECK(buffer != nullptr);
memset(buffer, 0, BLOCK_SZ);
return true;
}
bool WorkerThread::ProcessCowOp(const CowOperation* cow_op) {
CHECK(cow_op != nullptr);
switch (cow_op->type) {
case kCowReplaceOp: {
return ProcessReplaceOp(cow_op);
}
case kCowZeroOp: {
return ProcessZeroOp();
}
case kCowCopyOp: {
return ProcessCopyOp(cow_op);
}
default: {
SNAP_LOG(ERROR) << "Unknown operation-type found: " << cow_op->type;
}
}
return false;
}
int WorkerThread::ReadUnalignedSector(sector_t sector, size_t size,
std::map<sector_t, const CowOperation*>::iterator& it) {
size_t skip_sector_size = 0;
SNAP_LOG(DEBUG) << "ReadUnalignedSector: sector " << sector << " size: " << size
<< " Aligned sector: " << it->second;
if (!ProcessCowOp(it->second)) {
SNAP_LOG(ERROR) << "ReadUnalignedSector: " << sector << " failed of size: " << size;
return -1;
}
int num_sectors_skip = sector - it->first;
if (num_sectors_skip > 0) {
skip_sector_size = num_sectors_skip << SECTOR_SHIFT;
char* buffer = reinterpret_cast<char*>(bufsink_.GetBufPtr());
struct dm_user_message* msg = (struct dm_user_message*)(&(buffer[0]));
memmove(msg->payload.buf, (char*)msg->payload.buf + skip_sector_size,
(BLOCK_SZ - skip_sector_size));
}
bufsink_.ResetBufferOffset();
return std::min(size, (BLOCK_SZ - skip_sector_size));
}
/*
* Read the data for a given COW Operation.
*
* Kernel can issue IO at a sector granularity.
* Hence, an IO may end up with reading partial
* data from a COW operation or we may also
* end up with interspersed request between
* two COW operations.
*
*/
int WorkerThread::ReadData(sector_t sector, size_t size) {
std::map<sector_t, const CowOperation*>& chunk_map = snapuserd_->GetChunkMap();
/*
* chunk_map stores COW operation at 4k granularity.
* If the requested IO with the sector falls on the 4k
* boundary, then we can read the COW op directly without
* any issue.
*
* However, if the requested sector is not 4K aligned,
* then we will have the find the nearest COW operation
* and chop the 4K block to fetch the requested sector.
*/
std::map<sector_t, const CowOperation*>::iterator it = chunk_map.find(sector);
if (it == chunk_map.end()) {
it = chunk_map.lower_bound(sector);
if (it != chunk_map.begin()) {
--it;
}
/*
* If the IO is spanned between two COW operations,
* split the IO into two parts:
*
* 1: Read the first part from the single COW op
* 2: Read the second part from the next COW op.
*
* Ex: Let's say we have a 1024 Bytes IO request.
*
* 0 COW OP-1 4096 COW OP-2 8192
* |******************|*******************|
* |*****|*****|
* 3584 4608
* <- 1024B - >
*
* We have two COW operations which are 4k blocks.
* The IO is requested for 1024 Bytes which are spanned
* between two COW operations. We will split this IO
* into two parts:
*
* 1: IO of size 512B from offset 3584 bytes (COW OP-1)
* 2: IO of size 512B from offset 4096 bytes (COW OP-2)
*/
return ReadUnalignedSector(sector, size, it);
}
int num_ops = DIV_ROUND_UP(size, BLOCK_SZ);
while (num_ops) {
if (!ProcessCowOp(it->second)) {
return -1;
}
num_ops -= 1;
it++;
// Update the buffer offset
bufsink_.UpdateBufferOffset(BLOCK_SZ);
SNAP_LOG(DEBUG) << "ReadData at sector: " << sector << " size: " << size;
}
// Reset the buffer offset
bufsink_.ResetBufferOffset();
return size;
}
/*
* dm-snap does prefetch reads while reading disk-exceptions.
* By default, prefetch value is set to 12; this means that
* dm-snap will issue 12 areas wherein each area is a 4k page
* of disk-exceptions.
*
* If during prefetch, if the chunk-id seen is beyond the
* actual number of metadata page, fill the buffer with zero.
* When dm-snap starts parsing the buffer, it will stop
* reading metadata page once the buffer content is zero.
*/
bool WorkerThread::ZerofillDiskExceptions(size_t read_size) {
size_t size = exceptions_per_area_ * sizeof(struct disk_exception);
if (read_size > size) {
return false;
}
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memset(buffer, 0, size);
return true;
}
/*
* A disk exception is a simple mapping of old_chunk to new_chunk.
* When dm-snapshot device is created, kernel requests these mapping.
*
* Each disk exception is of size 16 bytes. Thus a single 4k page can
* have:
*
* exceptions_per_area_ = 4096/16 = 256. This entire 4k page
* is considered a metadata page and it is represented by chunk ID.
*
* Convert the chunk ID to index into the vector which gives us
* the metadata page.
*/
bool WorkerThread::ReadDiskExceptions(chunk_t chunk, size_t read_size) {
uint32_t stride = exceptions_per_area_ + 1;
size_t size;
const std::vector<std::unique_ptr<uint8_t[]>>& vec = snapuserd_->GetMetadataVec();
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
if (divresult.quot < vec.size()) {
size = exceptions_per_area_ * sizeof(struct disk_exception);
CHECK(read_size == size);
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memcpy(buffer, vec[divresult.quot].get(), size);
} else {
return ZerofillDiskExceptions(read_size);
}
return true;
}
loff_t WorkerThread::GetMergeStartOffset(void* merged_buffer, void* unmerged_buffer,
int* unmerged_exceptions) {
loff_t offset = 0;
*unmerged_exceptions = 0;
while (*unmerged_exceptions <= exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
// Unmerged op by the kernel
if (merged_de->old_chunk != 0 || merged_de->new_chunk != 0) {
CHECK(merged_de->old_chunk == cow_de->old_chunk);
CHECK(merged_de->new_chunk == cow_de->new_chunk);
offset += sizeof(struct disk_exception);
*unmerged_exceptions += 1;
continue;
}
break;
}
CHECK(!(*unmerged_exceptions == exceptions_per_area_));
SNAP_LOG(DEBUG) << "Unmerged_Exceptions: " << *unmerged_exceptions << " Offset: " << offset;
return offset;
}
int WorkerThread::GetNumberOfMergedOps(void* merged_buffer, void* unmerged_buffer, loff_t offset,
int unmerged_exceptions) {
int merged_ops_cur_iter = 0;
std::map<sector_t, const CowOperation*>& chunk_map = snapuserd_->GetChunkMap();
// Find the operations which are merged in this cycle.
while ((unmerged_exceptions + merged_ops_cur_iter) < exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
CHECK(merged_de->new_chunk == 0);
CHECK(merged_de->old_chunk == 0);
if (cow_de->new_chunk != 0) {
merged_ops_cur_iter += 1;
offset += sizeof(struct disk_exception);
const CowOperation* cow_op = chunk_map[ChunkToSector(cow_de->new_chunk)];
CHECK(cow_op != nullptr);
CHECK(cow_op->new_block == cow_de->old_chunk);
// zero out to indicate that operation is merged.
cow_de->old_chunk = 0;
cow_de->new_chunk = 0;
} else if (cow_de->old_chunk == 0) {
// Already merged op in previous iteration or
// This could also represent a partially filled area.
//
// If the op was merged in previous cycle, we don't have
// to count them.
CHECK(cow_de->new_chunk == 0);
break;
} else {
SNAP_LOG(ERROR) << "Error in merge operation. Found invalid metadata: "
<< " merged_de-old-chunk: " << merged_de->old_chunk
<< " merged_de-new-chunk: " << merged_de->new_chunk
<< " cow_de-old-chunk: " << cow_de->old_chunk
<< " cow_de-new-chunk: " << cow_de->new_chunk
<< " unmerged_exceptions: " << unmerged_exceptions
<< " merged_ops_cur_iter: " << merged_ops_cur_iter
<< " offset: " << offset;
return -1;
}
}
return merged_ops_cur_iter;
}
bool WorkerThread::ProcessMergeComplete(chunk_t chunk, void* buffer) {
uint32_t stride = exceptions_per_area_ + 1;
const std::vector<std::unique_ptr<uint8_t[]>>& vec = snapuserd_->GetMetadataVec();
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
CHECK(divresult.quot < vec.size());
SNAP_LOG(DEBUG) << "ProcessMergeComplete: chunk: " << chunk
<< " Metadata-Index: " << divresult.quot;
int unmerged_exceptions = 0;
loff_t offset = GetMergeStartOffset(buffer, vec[divresult.quot].get(), &unmerged_exceptions);
int merged_ops_cur_iter =
GetNumberOfMergedOps(buffer, vec[divresult.quot].get(), offset, unmerged_exceptions);
// There should be at least one operation merged in this cycle
CHECK(merged_ops_cur_iter > 0);
if (!snapuserd_->CommitMerge(merged_ops_cur_iter)) {
return false;
}
SNAP_LOG(DEBUG) << "Merge success: " << merged_ops_cur_iter << "chunk: " << chunk;
return true;
}
// Read Header from dm-user misc device. This gives
// us the sector number for which IO is issued by dm-snapshot device
bool WorkerThread::ReadDmUserHeader() {
if (!android::base::ReadFully(ctrl_fd_, bufsink_.GetBufPtr(), sizeof(struct dm_user_header))) {
if (errno != ENOTBLK) {
SNAP_PLOG(ERROR) << "Control-read failed";
}
return false;
}
return true;
}
// Send the payload/data back to dm-user misc device.
bool WorkerThread::WriteDmUserPayload(size_t size) {
if (!android::base::WriteFully(ctrl_fd_, bufsink_.GetBufPtr(),
sizeof(struct dm_user_header) + size)) {
SNAP_PLOG(ERROR) << "Write to dm-user failed size: " << size;
return false;
}
return true;
}
bool WorkerThread::ReadDmUserPayload(void* buffer, size_t size) {
if (!android::base::ReadFully(ctrl_fd_, buffer, size)) {
SNAP_PLOG(ERROR) << "ReadDmUserPayload failed size: " << size;
return false;
}
return true;
}
bool WorkerThread::DmuserWriteRequest() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
// device mapper has the capability to allow
// targets to flush the cache when writes are completed. This
// is controlled by each target by a flag "flush_supported".
// This flag is set by dm-user. When flush is supported,
// a number of zero-length bio's will be submitted to
// the target for the purpose of flushing cache. It is the
// responsibility of the target driver - which is dm-user in this
// case, to remap these bio's to the underlying device. Since,
// there is no underlying device for dm-user, this zero length
// bio's gets routed to daemon.
//
// Flush operations are generated post merge by dm-snap by having
// REQ_PREFLUSH flag set. Snapuser daemon doesn't have anything
// to flush per se; hence, just respond back with a success message.
if (header->sector == 0) {
CHECK(header->len == 0);
header->type = DM_USER_RESP_SUCCESS;
if (!WriteDmUserPayload(0)) {
return false;
}
return true;
}
std::map<sector_t, const CowOperation*>& chunk_map = snapuserd_->GetChunkMap();
size_t remaining_size = header->len;
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
CHECK(read_size == BLOCK_SZ) << "DmuserWriteRequest: read_size: " << read_size;
CHECK(header->sector > 0);
chunk_t chunk = SectorToChunk(header->sector);
CHECK(chunk_map.find(header->sector) == chunk_map.end());
void* buffer = bufsink_.GetPayloadBuffer(read_size);
CHECK(buffer != nullptr);
header->type = DM_USER_RESP_SUCCESS;
if (!ReadDmUserPayload(buffer, read_size)) {
SNAP_LOG(ERROR) << "ReadDmUserPayload failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
}
if (header->type == DM_USER_RESP_SUCCESS && !ProcessMergeComplete(chunk, buffer)) {
SNAP_LOG(ERROR) << "ProcessMergeComplete failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ProcessMergeComplete success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
if (!WriteDmUserPayload(0)) {
return false;
}
return true;
}
bool WorkerThread::DmuserReadRequest() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
size_t remaining_size = header->len;
loff_t offset = 0;
sector_t sector = header->sector;
std::map<sector_t, const CowOperation*>& chunk_map = snapuserd_->GetChunkMap();
do {
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
int ret = read_size;
header->type = DM_USER_RESP_SUCCESS;
chunk_t chunk = SectorToChunk(header->sector);
// Request to sector 0 is always for kernel
// representation of COW header. This IO should be only
// once during dm-snapshot device creation. We should
// never see multiple IO requests. Additionally this IO
// will always be a single 4k.
if (header->sector == 0) {
CHECK(read_size == BLOCK_SZ) << " Sector 0 read request of size: " << read_size;
ConstructKernelCowHeader();
SNAP_LOG(DEBUG) << "Kernel header constructed";
} else {
if (!offset && (read_size == BLOCK_SZ) &&
chunk_map.find(header->sector) == chunk_map.end()) {
if (!ReadDiskExceptions(chunk, read_size)) {
SNAP_LOG(ERROR) << "ReadDiskExceptions failed for chunk id: " << chunk
<< "Sector: " << header->sector;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ReadDiskExceptions success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
} else {
chunk_t num_sectors_read = (offset >> SECTOR_SHIFT);
ret = ReadData(sector + num_sectors_read, read_size);
if (ret < 0) {
SNAP_LOG(ERROR) << "ReadData failed for chunk id: " << chunk
<< " Sector: " << (sector + num_sectors_read)
<< " size: " << read_size << " header-len: " << header->len;
header->type = DM_USER_RESP_ERROR;
} else {
SNAP_LOG(DEBUG) << "ReadData success for chunk id: " << chunk
<< "Sector: " << header->sector;
}
}
}
// Daemon will not be terminated if there is any error. We will
// just send the error back to dm-user.
if (!WriteDmUserPayload(ret)) {
return false;
}
remaining_size -= ret;
offset += ret;
} while (remaining_size > 0);
return true;
}
void WorkerThread::InitializeBufsink() {
// Allocate the buffer which is used to communicate between
// daemon and dm-user. The buffer comprises of header and a fixed payload.
// If the dm-user requests a big IO, the IO will be broken into chunks
// of PAYLOAD_SIZE.
size_t buf_size = sizeof(struct dm_user_header) + PAYLOAD_SIZE;
bufsink_.Initialize(buf_size);
}
bool WorkerThread::RunThread() {
InitializeBufsink();
if (!InitializeFds()) {
return false;
}
if (!InitReader()) {
return false;
}
// Start serving IO
while (true) {
if (!ProcessIORequest()) {
break;
}
}
CloseFds();
reader_->CloseCowFd();
return true;
}
bool WorkerThread::ProcessIORequest() {
struct dm_user_header* header = bufsink_.GetHeaderPtr();
if (!ReadDmUserHeader()) {
return false;
}
SNAP_LOG(DEBUG) << "msg->seq: " << std::hex << header->seq;
SNAP_LOG(DEBUG) << "msg->type: " << std::hex << header->type;
SNAP_LOG(DEBUG) << "msg->flags: " << std::hex << header->flags;
SNAP_LOG(DEBUG) << "msg->sector: " << std::hex << header->sector;
SNAP_LOG(DEBUG) << "msg->len: " << std::hex << header->len;
switch (header->type) {
case DM_USER_REQ_MAP_READ: {
if (!DmuserReadRequest()) {
return false;
}
break;
}
case DM_USER_REQ_MAP_WRITE: {
if (!DmuserWriteRequest()) {
return false;
}
break;
}
}
return true;
}
} // namespace snapshot
} // namespace android