/* * Android "Almost" C Compiler. * This is a compiler for a small subset of the C language, intended for use * in scripting environments where speed and memory footprint are important. * * This code is based upon the "unobfuscated" version of the * Obfuscated Tiny C compiler, see the file LICENSE for details. * */ #include #include #include #include #include #include #include #include #include #if defined(__i386__) #include #endif #if defined(__arm__) #include #endif #if defined(__arm__) #define DEFAULT_ARM_CODEGEN #define PROVIDE_ARM_CODEGEN #elif defined(__i386__) #define DEFAULT_X86_CODEGEN #define PROVIDE_X86_CODEGEN #elif defined(__x86_64__) #define DEFAULT_X64_CODEGEN #define PROVIDE_X64_CODEGEN #endif #ifdef PROVIDE_ARM_CODEGEN #include "disassem.h" #endif #include #define LOG_API(...) do {} while(0) // #define LOG_API(...) fprintf (stderr, __VA_ARGS__) #define LOG_STACK(...) do {} while(0) // #define LOG_STACK(...) fprintf (stderr, __VA_ARGS__) // #define ENABLE_ARM_DISASSEMBLY // #define PROVIDE_TRACE_CODEGEN namespace acc { class ErrorSink { public: void error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); verror(fmt, ap); va_end(ap); } virtual void verror(const char* fmt, va_list ap) = 0; }; class Compiler : public ErrorSink { class CodeBuf { char* ind; // Output code pointer char* pProgramBase; ErrorSink* mErrorSink; int mSize; bool mOverflowed; void release() { if (pProgramBase != 0) { free(pProgramBase); pProgramBase = 0; } } bool check(int n) { int newSize = ind - pProgramBase + n; bool overflow = newSize > mSize; if (overflow && !mOverflowed) { mOverflowed = true; if (mErrorSink) { mErrorSink->error("Code too large: %d bytes", newSize); } } return overflow; } public: CodeBuf() { pProgramBase = 0; ind = 0; mErrorSink = 0; mSize = 0; mOverflowed = false; } ~CodeBuf() { release(); } void init(int size) { release(); mSize = size; pProgramBase = (char*) calloc(1, size); ind = pProgramBase; } void setErrorSink(ErrorSink* pErrorSink) { mErrorSink = pErrorSink; } int o4(int n) { if(check(4)) { return 0; } intptr_t result = (intptr_t) ind; * (int*) ind = n; ind += 4; return result; } /* * Output a byte. Handles all values, 0..ff. */ void ob(int n) { if(check(1)) { return; } *ind++ = n; } inline void* getBase() { return (void*) pProgramBase; } intptr_t getSize() { return ind - pProgramBase; } intptr_t getPC() { return (intptr_t) ind; } }; /** * A code generator creates an in-memory program, generating the code on * the fly. There is one code generator implementation for each supported * architecture. * * The code generator implements the following abstract machine: * R0 - the main accumulator. * R1 - the secondary accumulator. * FP - a frame pointer for accessing function arguments and local * variables. * SP - a stack pointer for storing intermediate results while evaluating * expressions. The stack pointer grows downwards. * * The function calling convention is that all arguments are placed on the * stack such that the first argument has the lowest address. * After the call, the result is in R0. The caller is responsible for * removing the arguments from the stack. * The R0 and R1 registers are not saved across function calls. The * FP and SP registers are saved. */ class CodeGenerator { public: CodeGenerator() { mErrorSink = 0; pCodeBuf = 0; } virtual ~CodeGenerator() {} virtual void init(CodeBuf* pCodeBuf) { this->pCodeBuf = pCodeBuf; pCodeBuf->setErrorSink(mErrorSink); } virtual void setErrorSink(ErrorSink* pErrorSink) { mErrorSink = pErrorSink; if (pCodeBuf) { pCodeBuf->setErrorSink(mErrorSink); } } /* Emit a function prolog. * argCount is the number of arguments. * Save the old value of the FP. * Set the new value of the FP. * Convert from the native platform calling convention to * our stack-based calling convention. This may require * pushing arguments from registers to the stack. * Allocate "N" bytes of stack space. N isn't known yet, so * just emit the instructions for adjusting the stack, and return * the address to patch up. The patching will be done in * functionExit(). * returns address to patch with local variable size. */ virtual int functionEntry(int argCount) = 0; /* Emit a function epilog. * Restore the old SP and FP register values. * Return to the calling function. * argCount - the number of arguments to the function. * localVariableAddress - returned from functionEntry() * localVariableSize - the size in bytes of the local variables. */ virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) = 0; /* load immediate value to R0 */ virtual void li(int t) = 0; /* Jump to a target, and return the address of the word that * holds the target data, in case it needs to be fixed up later. */ virtual int gjmp(int t) = 0; /* Test R0 and jump to a target if the test succeeds. * l = 0: je, l == 1: jne * Return the address of the word that holds the targed data, in * case it needs to be fixed up later. */ virtual int gtst(bool l, int t) = 0; /* Compare R1 against R0, and store the boolean result in R0. * op specifies the comparison. */ virtual void gcmp(int op) = 0; /* Perform the arithmetic op specified by op. R1 is the * left argument, R0 is the right argument. */ virtual void genOp(int op) = 0; /* Set R1 to 0. */ virtual void clearR1() = 0; /* Push R0 onto the stack. */ virtual void pushR0() = 0; /* Pop R1 off of the stack. */ virtual void popR1() = 0; /* Store R0 to the address stored in R1. * isInt is true if a whole 4-byte integer value * should be stored, otherwise a 1-byte character * value should be stored. */ virtual void storeR0ToR1(bool isInt) = 0; /* Load R0 from the address stored in R0. * isInt is true if a whole 4-byte integer value * should be loaded, otherwise a 1-byte character * value should be loaded. */ virtual void loadR0FromR0(bool isInt) = 0; /* Load the absolute address of a variable to R0. * If ea <= LOCAL, then this is a local variable, or an * argument, addressed relative to FP. * else it is an absolute global address. */ virtual void leaR0(int ea) = 0; /* Store R0 to a variable. * If ea <= LOCAL, then this is a local variable, or an * argument, addressed relative to FP. * else it is an absolute global address. */ virtual void storeR0(int ea) = 0; /* load R0 from a variable. * If ea <= LOCAL, then this is a local variable, or an * argument, addressed relative to FP. * else it is an absolute global address. * If isIncDec is true, then the stored variable's value * should be post-incremented or post-decremented, based * on the value of op. */ virtual void loadR0(int ea, bool isIncDec, int op) = 0; /* Emit code to adjust the stack for a function call. Return the * label for the address of the instruction that adjusts the * stack size. This will be passed as argument "a" to * endFunctionCallArguments. */ virtual int beginFunctionCallArguments() = 0; /* Emit code to store R0 to the stack at byte offset l. */ virtual void storeR0ToArg(int l) = 0; /* Patch the function call preamble. * a is the address returned from beginFunctionCallArguments * l is the number of bytes the arguments took on the stack. * Typically you would also emit code to convert the argument * list into whatever the native function calling convention is. * On ARM for example you would pop the first 5 arguments into * R0..R4 */ virtual void endFunctionCallArguments(int a, int l) = 0; /* Emit a call to an unknown function. The argument "symbol" needs to * be stored in the location where the address should go. It forms * a chain. The address will be patched later. * Return the address of the word that has to be patched. */ virtual int callForward(int symbol) = 0; /* Call a function using PC-relative addressing. t is the PC-relative * address of the function. It has already been adjusted for the * architectural jump offset, so just store it as-is. */ virtual void callRelative(int t) = 0; /* Call a function pointer. L is the number of bytes the arguments * take on the stack. The address of the function is stored at * location SP + l. */ virtual void callIndirect(int l) = 0; /* Adjust SP after returning from a function call. l is the * number of bytes of arguments stored on the stack. isIndirect * is true if this was an indirect call. (In which case the * address of the function is stored at location SP + l.) */ virtual void adjustStackAfterCall(int l, bool isIndirect) = 0; /* Print a disassembly of the assembled code to out. Return * non-zero if there is an error. */ virtual int disassemble(FILE* out) = 0; /* Generate a symbol at the current PC. t is the head of a * linked list of addresses to patch. */ virtual void gsym(int t) = 0; /* * Do any cleanup work required at the end of a compile. * For example, an instruction cache might need to be * invalidated. * Return non-zero if there is an error. */ virtual int finishCompile() = 0; /** * Adjust relative branches by this amount. */ virtual int jumpOffset() = 0; protected: /* * Output a byte. Handles all values, 0..ff. */ void ob(int n) { pCodeBuf->ob(n); } intptr_t o4(int data) { return pCodeBuf->o4(data); } intptr_t getBase() { return (intptr_t) pCodeBuf->getBase(); } intptr_t getPC() { return pCodeBuf->getPC(); } intptr_t getSize() { return pCodeBuf->getSize(); } void error(const char* fmt,...) { va_list ap; va_start(ap, fmt); mErrorSink->verror(fmt, ap); va_end(ap); } private: CodeBuf* pCodeBuf; ErrorSink* mErrorSink; }; #ifdef PROVIDE_ARM_CODEGEN class ARMCodeGenerator : public CodeGenerator { public: ARMCodeGenerator() {} virtual ~ARMCodeGenerator() {} /* returns address to patch with local variable size */ virtual int functionEntry(int argCount) { LOG_API("functionEntry(%d);\n", argCount); mStackUse = 0; // sp -> arg4 arg5 ... // Push our register-based arguments back on the stack if (argCount > 0) { int regArgCount = argCount <= 4 ? argCount : 4; o4(0xE92D0000 | ((1 << argCount) - 1)); // stmfd sp!, {} mStackUse += regArgCount * 4; } // sp -> arg0 arg1 ... o4(0xE92D4800); // stmfd sp!, {fp, lr} mStackUse += 2 * 4; // sp, fp -> oldfp, retadr, arg0 arg1 .... o4(0xE1A0B00D); // mov fp, sp LOG_STACK("functionEntry: %d\n", mStackUse); return o4(0xE24DD000); // sub sp, sp, # // We don't know how many local variables we are going to use, // but we will round the allocation up to a multiple of // STACK_ALIGNMENT, so it won't affect the stack alignment. } virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) { LOG_API("functionExit(%d, %d, %d);\n", argCount, localVariableAddress, localVariableSize); // Round local variable size up to a multiple of stack alignment localVariableSize = ((localVariableSize + STACK_ALIGNMENT - 1) / STACK_ALIGNMENT) * STACK_ALIGNMENT; // Patch local variable allocation code: if (localVariableSize < 0 || localVariableSize > 255) { error("localVariables out of range: %d", localVariableSize); } *(char*) (localVariableAddress) = localVariableSize; // sp -> locals .... fp -> oldfp, retadr, arg0, arg1, ... o4(0xE1A0E00B); // mov lr, fp o4(0xE59BB000); // ldr fp, [fp] o4(0xE28ED004); // add sp, lr, #4 // sp -> retadr, arg0, ... o4(0xE8BD4000); // ldmfd sp!, {lr} // sp -> arg0 .... if (argCount > 0) { // We store the PC into the lr so we can adjust the sp before // returning. We need to pull off the registers we pushed // earlier. We don't need to actually store them anywhere, // just adjust the stack. int regArgCount = argCount <= 4 ? argCount : 4; o4(0xE28DD000 | (regArgCount << 2)); // add sp, sp, #argCount << 2 } o4(0xE12FFF1E); // bx lr } /* load immediate value */ virtual void li(int t) { LOG_API("li(%d);\n", t); if (t >= 0 && t < 255) { o4(0xE3A00000 + t); // mov r0, #0 } else if (t >= -256 && t < 0) { // mvn means move constant ^ ~0 o4(0xE3E00001 - t); // mvn r0, #0 } else { o4(0xE51F0000); // ldr r0, .L3 o4(0xEA000000); // b .L99 o4(t); // .L3: .word 0 // .L99: } } virtual int gjmp(int t) { LOG_API("gjmp(%d);\n", t); return o4(0xEA000000 | encodeAddress(t)); // b .L33 } /* l = 0: je, l == 1: jne */ virtual int gtst(bool l, int t) { LOG_API("gtst(%d, %d);\n", l, t); o4(0xE3500000); // cmp r0,#0 int branch = l ? 0x1A000000 : 0x0A000000; // bne : beq return o4(branch | encodeAddress(t)); } virtual void gcmp(int op) { LOG_API("gcmp(%d);\n", op); o4(0xE1510000); // cmp r1, r1 switch(op) { case OP_EQUALS: o4(0x03A00001); // moveq r0,#1 o4(0x13A00000); // movne r0,#0 break; case OP_NOT_EQUALS: o4(0x03A00000); // moveq r0,#0 o4(0x13A00001); // movne r0,#1 break; case OP_LESS_EQUAL: o4(0xD3A00001); // movle r0,#1 o4(0xC3A00000); // movgt r0,#0 break; case OP_GREATER: o4(0xD3A00000); // movle r0,#0 o4(0xC3A00001); // movgt r0,#1 break; case OP_GREATER_EQUAL: o4(0xA3A00001); // movge r0,#1 o4(0xB3A00000); // movlt r0,#0 break; case OP_LESS: o4(0xA3A00000); // movge r0,#0 o4(0xB3A00001); // movlt r0,#1 break; default: error("Unknown comparison op %d", op); break; } } virtual void genOp(int op) { LOG_API("genOp(%d);\n", op); switch(op) { case OP_MUL: o4(0x0E0000091); // mul r0,r1,r0 break; case OP_DIV: callRuntime(runtime_DIV); break; case OP_MOD: callRuntime(runtime_MOD); break; case OP_PLUS: o4(0xE0810000); // add r0,r1,r0 break; case OP_MINUS: o4(0xE0410000); // sub r0,r1,r0 break; case OP_SHIFT_LEFT: o4(0xE1A00011); // lsl r0,r1,r0 break; case OP_SHIFT_RIGHT: o4(0xE1A00051); // asr r0,r1,r0 break; case OP_BIT_AND: o4(0xE0010000); // and r0,r1,r0 break; case OP_BIT_XOR: o4(0xE0210000); // eor r0,r1,r0 break; case OP_BIT_OR: o4(0xE1810000); // orr r0,r1,r0 break; case OP_BIT_NOT: o4(0xE1E00000); // mvn r0, r0 break; default: error("Unimplemented op %d\n", op); break; } } virtual void clearR1() { LOG_API("clearR1();\n"); o4(0xE3A01000); // mov r1, #0 } virtual void pushR0() { LOG_API("pushR0();\n"); o4(0xE92D0001); // stmfd sp!,{r0} mStackUse += 4; LOG_STACK("pushR0: %d\n", mStackUse); } virtual void popR1() { LOG_API("popR1();\n"); o4(0xE8BD0002); // ldmfd sp!,{r1} mStackUse -= 4; LOG_STACK("popR1: %d\n", mStackUse); } virtual void storeR0ToR1(bool isInt) { LOG_API("storeR0ToR1(%d);\n", isInt); if (isInt) { o4(0xE5810000); // str r0, [r1] } else { o4(0xE5C10000); // strb r0, [r1] } } virtual void loadR0FromR0(bool isInt) { LOG_API("loadR0FromR0(%d);\n", isInt); if (isInt) o4(0xE5900000); // ldr r0, [r0] else o4(0xE5D00000); // ldrb r0, [r0] } virtual void leaR0(int ea) { LOG_API("leaR0(%d);\n", ea); if (ea < LOCAL) { // Local, fp relative if (ea < -1023 || ea > 1023 || ((ea & 3) != 0)) { error("Offset out of range: %08x", ea); } if (ea < 0) { o4(0xE24B0F00 | (0xff & ((-ea) >> 2))); // sub r0, fp, #ea } else { o4(0xE28B0F00 | (0xff & (ea >> 2))); // add r0, fp, #ea } } else { // Global, absolute. o4(0xE59F0000); // ldr r0, .L1 o4(0xEA000000); // b .L99 o4(ea); // .L1: .word 0 // .L99: } } virtual void storeR0(int ea) { LOG_API("storeR0(%d);\n", ea); if (ea < LOCAL) { // Local, fp relative if (ea < -4095 || ea > 4095) { error("Offset out of range: %08x", ea); } if (ea < 0) { o4(0xE50B0000 | (0xfff & (-ea))); // str r0, [fp,#-ea] } else { o4(0xE58B0000 | (0xfff & ea)); // str r0, [fp,#ea] } } else{ // Global, absolute o4(0xE59F1000); // ldr r1, .L1 o4(0xEA000000); // b .L99 o4(ea); // .L1: .word 0 o4(0xE5810000); // .L99: str r0, [r1] } } virtual void loadR0(int ea, bool isIncDec, int op) { LOG_API("loadR0(%d, %d, %d);\n", ea, isIncDec, op); if (ea < LOCAL) { // Local, fp relative if (ea < -4095 || ea > 4095) { error("Offset out of range: %08x", ea); } if (ea < 0) { o4(0xE51B0000 | (0xfff & (-ea))); // ldr r0, [fp,#-ea] } else { o4(0xE59B0000 | (0xfff & ea)); // ldr r0, [fp,#ea] } } else { // Global, absolute o4(0xE59F2000); // ldr r2, .L1 o4(0xEA000000); // b .L99 o4(ea); // .L1: .word ea o4(0xE5920000); // .L99: ldr r0, [r2] } if (isIncDec) { switch (op) { case OP_INCREMENT: o4(0xE2801001); // add r1, r0, #1 break; case OP_DECREMENT: o4(0xE2401001); // sub r1, r0, #1 break; default: error("unknown opcode: %d", op); } if (ea < LOCAL) { // Local, fp relative // Don't need range check, was already checked above if (ea < 0) { o4(0xE50B1000 | (0xfff & (-ea))); // str r1, [fp,#-ea] } else { o4(0xE58B1000 | (0xfff & ea)); // str r1, [fp,#ea] } } else{ // Global, absolute // r2 is already set up from before. o4(0xE5821000); // str r1, [r2] } } } virtual int beginFunctionCallArguments() { LOG_API("beginFunctionCallArguments();\n"); return o4(0xE24DDF00); // Placeholder } virtual void storeR0ToArg(int l) { LOG_API("storeR0ToArg(%d);\n", l); if (l < 0 || l > 4096-4) { error("l out of range for stack offset: 0x%08x", l); } o4(0xE58D0000 + l); // str r0, [sp, #4] } virtual void endFunctionCallArguments(int a, int l) { LOG_API("endFunctionCallArguments(0x%08x, %d);\n", a, l); int argCount = l >> 2; int argumentStackUse = l; if (argCount > 0) { int regArgCount = argCount > 4 ? 4 : argCount; argumentStackUse -= regArgCount * 4; o4(0xE8BD0000 | ((1 << regArgCount) - 1)); // ldmfd sp!,{} } mStackUse += argumentStackUse; // Align stack. int missalignment = mStackUse - ((mStackUse / STACK_ALIGNMENT) * STACK_ALIGNMENT); mStackAlignmentAdjustment = 0; if (missalignment > 0) { mStackAlignmentAdjustment = STACK_ALIGNMENT - missalignment; } l += mStackAlignmentAdjustment; if (l < 0 || l > 0x3FC) { error("L out of range for stack adjustment: 0x%08x", l); } * (int*) a = 0xE24DDF00 | (l >> 2); // sub sp, sp, #0 << 2 mStackUse += mStackAlignmentAdjustment; LOG_STACK("endFunctionCallArguments mStackUse: %d, mStackAlignmentAdjustment %d\n", mStackUse, mStackAlignmentAdjustment); } virtual int callForward(int symbol) { LOG_API("callForward(%d);\n", symbol); // Forward calls are always short (local) return o4(0xEB000000 | encodeAddress(symbol)); } virtual void callRelative(int t) { LOG_API("callRelative(%d);\n", t); int abs = t + getPC() + jumpOffset(); LOG_API("abs=%d (0x%08x)\n", abs, abs); if (t >= - (1 << 25) && t < (1 << 25)) { o4(0xEB000000 | encodeAddress(t)); } else { // Long call. o4(0xE59FC000); // ldr r12, .L1 o4(0xEA000000); // b .L99 o4(t - 12); // .L1: .word 0 o4(0xE08CC00F); // .L99: add r12,pc o4(0xE12FFF3C); // blx r12 } } virtual void callIndirect(int l) { LOG_API("callIndirect(%d);\n", l); int argCount = l >> 2; int poppedArgs = argCount > 4 ? 4 : argCount; int adjustedL = l - (poppedArgs << 2) + mStackAlignmentAdjustment; if (adjustedL < 0 || adjustedL > 4096-4) { error("l out of range for stack offset: 0x%08x", l); } o4(0xE59DC000 | (0xfff & adjustedL)); // ldr r12, [sp,#adjustedL] o4(0xE12FFF3C); // blx r12 } virtual void adjustStackAfterCall(int l, bool isIndirect) { LOG_API("adjustStackAfterCall(%d, %d);\n", l, isIndirect); int argCount = l >> 2; int stackArgs = argCount > 4 ? argCount - 4 : 0; int stackUse = stackArgs + (isIndirect ? 1 : 0) + (mStackAlignmentAdjustment >> 2); if (stackUse) { if (stackUse < 0 || stackUse > 255) { error("L out of range for stack adjustment: 0x%08x", l); } o4(0xE28DDF00 | stackUse); // add sp, sp, #stackUse << 2 mStackUse -= stackUse * 4; LOG_STACK("adjustStackAfterCall: %d\n", mStackUse); } } virtual int jumpOffset() { return 8; } /* output a symbol and patch all calls to it */ virtual void gsym(int t) { LOG_API("gsym(0x%x)\n", t); int n; int base = getBase(); int pc = getPC(); LOG_API("pc = 0x%x\n", pc); while (t) { int data = * (int*) t; int decodedOffset = ((BRANCH_REL_ADDRESS_MASK & data) << 2); if (decodedOffset == 0) { n = 0; } else { n = base + decodedOffset; /* next value */ } *(int *) t = (data & ~BRANCH_REL_ADDRESS_MASK) | encodeRelAddress(pc - t - 8); t = n; } } virtual int finishCompile() { #if defined(__arm__) const long base = long(getBase()); const long curr = long(getPC()); int err = cacheflush(base, curr, 0); return err; #else return 0; #endif } virtual int disassemble(FILE* out) { #ifdef ENABLE_ARM_DISASSEMBLY disasmOut = out; disasm_interface_t di; di.di_readword = disassemble_readword; di.di_printaddr = disassemble_printaddr; di.di_printf = disassemble_printf; int base = getBase(); int pc = getPC(); for(int i = base; i < pc; i += 4) { fprintf(out, "%08x: %08x ", i, *(int*) i); ::disasm(&di, i, 0); } #endif return 0; } private: static FILE* disasmOut; static u_int disassemble_readword(u_int address) { return(*((u_int *)address)); } static void disassemble_printaddr(u_int address) { fprintf(disasmOut, "0x%08x", address); } static void disassemble_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(disasmOut, fmt, ap); va_end(ap); } static const int BRANCH_REL_ADDRESS_MASK = 0x00ffffff; /** Encode a relative address that might also be * a label. */ int encodeAddress(int value) { int base = getBase(); if (value >= base && value <= getPC() ) { // This is a label, encode it relative to the base. value = value - base; } return encodeRelAddress(value); } int encodeRelAddress(int value) { return BRANCH_REL_ADDRESS_MASK & (value >> 2); } typedef int (*int2FnPtr)(int a, int b); void callRuntime(int2FnPtr fn) { o4(0xE59F2000); // ldr r2, .L1 o4(0xEA000000); // b .L99 o4((int) fn); //.L1: .word fn o4(0xE12FFF32); //.L99: blx r2 } static int runtime_DIV(int a, int b) { return b / a; } static int runtime_MOD(int a, int b) { return b % a; } static const int STACK_ALIGNMENT = 8; int mStackUse; // This variable holds the amount we adjusted the stack in the most // recent endFunctionCallArguments call. It's examined by the // following adjustStackAfterCall call. int mStackAlignmentAdjustment; }; #endif // PROVIDE_ARM_CODEGEN #ifdef PROVIDE_X86_CODEGEN class X86CodeGenerator : public CodeGenerator { public: X86CodeGenerator() {} virtual ~X86CodeGenerator() {} /* returns address to patch with local variable size */ virtual int functionEntry(int argCount) { o(0xe58955); /* push %ebp, mov %esp, %ebp */ return oad(0xec81, 0); /* sub $xxx, %esp */ } virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) { o(0xc3c9); /* leave, ret */ *(int *) localVariableAddress = localVariableSize; /* save local variables */ } /* load immediate value */ virtual void li(int t) { oad(0xb8, t); /* mov $xx, %eax */ } virtual int gjmp(int t) { return psym(0xe9, t); } /* l = 0: je, l == 1: jne */ virtual int gtst(bool l, int t) { o(0x0fc085); /* test %eax, %eax, je/jne xxx */ return psym(0x84 + l, t); } virtual void gcmp(int op) { int t = decodeOp(op); o(0xc139); /* cmp %eax,%ecx */ li(0); o(0x0f); /* setxx %al */ o(t + 0x90); o(0xc0); } virtual void genOp(int op) { o(decodeOp(op)); if (op == OP_MOD) o(0x92); /* xchg %edx, %eax */ } virtual void clearR1() { oad(0xb9, 0); /* movl $0, %ecx */ } virtual void pushR0() { o(0x50); /* push %eax */ } virtual void popR1() { o(0x59); /* pop %ecx */ } virtual void storeR0ToR1(bool isInt) { o(0x0188 + isInt); /* movl %eax/%al, (%ecx) */ } virtual void loadR0FromR0(bool isInt) { if (isInt) o(0x8b); /* mov (%eax), %eax */ else o(0xbe0f); /* movsbl (%eax), %eax */ ob(0); /* add zero in code */ } virtual void leaR0(int ea) { gmov(10, ea); /* leal EA, %eax */ } virtual void storeR0(int ea) { gmov(6, ea); /* mov %eax, EA */ } virtual void loadR0(int ea, bool isIncDec, int op) { gmov(8, ea); /* mov EA, %eax */ if (isIncDec) { /* Implement post-increment or post decrement. */ gmov(0, ea); /* 83 ADD */ o(decodeOp(op)); } } virtual int beginFunctionCallArguments() { return oad(0xec81, 0); /* sub $xxx, %esp */ } virtual void storeR0ToArg(int l) { oad(0x248489, l); /* movl %eax, xxx(%esp) */ } virtual void endFunctionCallArguments(int a, int l) { * (int*) a = l; } virtual int callForward(int symbol) { return psym(0xe8, symbol); /* call xxx */ } virtual void callRelative(int t) { psym(0xe8, t); /* call xxx */ } virtual void callIndirect(int l) { oad(0x2494ff, l); /* call *xxx(%esp) */ } virtual void adjustStackAfterCall(int l, bool isIndirect) { if (isIndirect) { l += 4; } if (l > 0) { oad(0xc481, l); /* add $xxx, %esp */ } } virtual int jumpOffset() { return 5; } virtual int disassemble(FILE* out) { return 0; } /* output a symbol and patch all calls to it */ virtual void gsym(int t) { int n; int pc = getPC(); while (t) { n = *(int *) t; /* next value */ *(int *) t = pc - t - 4; t = n; } } virtual int finishCompile() { size_t pagesize = 4096; size_t base = (size_t) getBase() & ~ (pagesize - 1); size_t top = ((size_t) getPC() + pagesize - 1) & ~ (pagesize - 1); int err = mprotect((void*) base, top - base, PROT_READ | PROT_WRITE | PROT_EXEC); if (err) { error("mprotect() failed: %d", errno); } return err; } private: /** Output 1 to 4 bytes. * */ void o(int n) { /* cannot use unsigned, so we must do a hack */ while (n && n != -1) { ob(n & 0xff); n = n >> 8; } } /* psym is used to put an instruction with a data field which is a reference to a symbol. It is in fact the same as oad ! */ int psym(int n, int t) { return oad(n, t); } /* instruction + address */ int oad(int n, int t) { o(n); int result = getPC(); o4(t); return result; } static const int operatorHelper[]; int decodeOp(int op) { if (op < 0 || op > OP_COUNT) { error("Out-of-range operator: %d\n", op); op = 0; } return operatorHelper[op]; } void gmov(int l, int t) { o(l + 0x83); oad((t > -LOCAL && t < LOCAL) << 7 | 5, t); } }; #endif // PROVIDE_X86_CODEGEN #ifdef PROVIDE_TRACE_CODEGEN class TraceCodeGenerator : public CodeGenerator { private: CodeGenerator* mpBase; public: TraceCodeGenerator(CodeGenerator* pBase) { mpBase = pBase; } virtual ~TraceCodeGenerator() { delete mpBase; } virtual void init(CodeBuf* pCodeBuf) { mpBase->init(pCodeBuf); } void setErrorSink(ErrorSink* pErrorSink) { mpBase->setErrorSink(pErrorSink); } /* returns address to patch with local variable size */ virtual int functionEntry(int argCount) { int result = mpBase->functionEntry(argCount); fprintf(stderr, "functionEntry(%d) -> %d\n", argCount, result); return result; } virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) { fprintf(stderr, "functionExit(%d, %d, %d)\n", argCount, localVariableAddress, localVariableSize); mpBase->functionExit(argCount, localVariableAddress, localVariableSize); } /* load immediate value */ virtual void li(int t) { fprintf(stderr, "li(%d)\n", t); mpBase->li(t); } virtual int gjmp(int t) { int result = mpBase->gjmp(t); fprintf(stderr, "gjmp(%d) = %d\n", t, result); return result; } /* l = 0: je, l == 1: jne */ virtual int gtst(bool l, int t) { int result = mpBase->gtst(l, t); fprintf(stderr, "gtst(%d,%d) = %d\n", l, t, result); return result; } virtual void gcmp(int op) { fprintf(stderr, "gcmp(%d)\n", op); mpBase->gcmp(op); } virtual void genOp(int op) { fprintf(stderr, "genOp(%d)\n", op); mpBase->genOp(op); } virtual void clearR1() { fprintf(stderr, "clearR1()\n"); mpBase->clearR1(); } virtual void pushR0() { fprintf(stderr, "pushR0()\n"); mpBase->pushR0(); } virtual void popR1() { fprintf(stderr, "popR1()\n"); mpBase->popR1(); } virtual void storeR0ToR1(bool isInt) { fprintf(stderr, "storeR0ToR1(%d)\n", isInt); mpBase->storeR0ToR1(isInt); } virtual void loadR0FromR0(bool isInt) { fprintf(stderr, "loadR0FromR0(%d)\n", isInt); mpBase->loadR0FromR0(isInt); } virtual void leaR0(int ea) { fprintf(stderr, "leaR0(%d)\n", ea); mpBase->leaR0(ea); } virtual void storeR0(int ea) { fprintf(stderr, "storeR0(%d)\n", ea); mpBase->storeR0(ea); } virtual void loadR0(int ea, bool isIncDec, int op) { fprintf(stderr, "loadR0(%d, %d, %d)\n", ea, isIncDec, op); mpBase->loadR0(ea, isIncDec, op); } virtual int beginFunctionCallArguments() { int result = mpBase->beginFunctionCallArguments(); fprintf(stderr, "beginFunctionCallArguments() = %d\n", result); return result; } virtual void storeR0ToArg(int l) { fprintf(stderr, "storeR0ToArg(%d)\n", l); mpBase->storeR0ToArg(l); } virtual void endFunctionCallArguments(int a, int l) { fprintf(stderr, "endFunctionCallArguments(%d, %d)\n", a, l); mpBase->endFunctionCallArguments(a, l); } virtual int callForward(int symbol) { int result = mpBase->callForward(symbol); fprintf(stderr, "callForward(%d) = %d\n", symbol, result); return result; } virtual void callRelative(int t) { fprintf(stderr, "callRelative(%d)\n", t); mpBase->callRelative(t); } virtual void callIndirect(int l) { fprintf(stderr, "callIndirect(%d)\n", l); mpBase->callIndirect(l); } virtual void adjustStackAfterCall(int l, bool isIndirect) { fprintf(stderr, "adjustStackAfterCall(%d, %d)\n", l, isIndirect); mpBase->adjustStackAfterCall(l, isIndirect); } virtual int jumpOffset() { return mpBase->jumpOffset(); } virtual int disassemble(FILE* out) { return mpBase->disassemble(out); } /* output a symbol and patch all calls to it */ virtual void gsym(int t) { fprintf(stderr, "gsym(%d)\n", t); mpBase->gsym(t); } virtual int finishCompile() { int result = mpBase->finishCompile(); fprintf(stderr, "finishCompile() = %d\n", result); return result; } }; #endif // PROVIDE_TRACE_CODEGEN class InputStream { public: int getChar() { if (bumpLine) { line++; bumpLine = false; } int ch = get(); if (ch == '\n') { bumpLine = true; } return ch; } int getLine() { return line; } protected: InputStream() : line(1), bumpLine(false) { } private: virtual int get() = 0; int line; bool bumpLine; }; class FileInputStream : public InputStream { public: FileInputStream(FILE* in) : f(in) {} private: virtual int get() { return fgetc(f); } FILE* f; }; class TextInputStream : public InputStream { public: TextInputStream(const char* text, size_t textLength) : pText(text), mTextLength(textLength), mPosition(0) { } private: virtual int get() { return mPosition < mTextLength ? pText[mPosition++] : EOF; } const char* pText; size_t mTextLength; size_t mPosition; }; class String { public: String() { mpBase = 0; mUsed = 0; mSize = 0; } String(const char* item, int len, bool adopt) { if (len < 0) { len = strlen(item); } if (adopt) { mpBase = (char*) item; mUsed = len; mSize = len + 1; } else { mpBase = 0; mUsed = 0; mSize = 0; appendBytes(item, len); } } String(const String& other) { mpBase = 0; mUsed = 0; mSize = 0; appendBytes(other.getUnwrapped(), other.len()); } ~String() { if (mpBase) { free(mpBase); } } String& operator=(const String& other) { clear(); appendBytes(other.getUnwrapped(), other.len()); return *this; } inline char* getUnwrapped() const { return mpBase; } void clear() { mUsed = 0; if (mSize > 0) { mpBase[0] = 0; } } void appendCStr(const char* s) { appendBytes(s, strlen(s)); } void appendBytes(const char* s, int n) { memcpy(ensure(n), s, n + 1); } void append(char c) { * ensure(1) = c; } char* orphan() { char* result = mpBase; mpBase = 0; mUsed = 0; mSize = 0; return result; } void printf(const char* fmt,...) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } void vprintf(const char* fmt, va_list ap) { char* temp; int numChars = vasprintf(&temp, fmt, ap); memcpy(ensure(numChars), temp, numChars+1); free(temp); } inline size_t len() const { return mUsed; } private: char* ensure(int n) { size_t newUsed = mUsed + n; if (newUsed > mSize) { size_t newSize = mSize * 2 + 10; if (newSize < newUsed) { newSize = newUsed; } mpBase = (char*) realloc(mpBase, newSize + 1); mSize = newSize; } mpBase[newUsed] = '\0'; char* result = mpBase + mUsed; mUsed = newUsed; return result; } char* mpBase; size_t mUsed; size_t mSize; }; /** * Wrap an externally allocated string for use as a hash key. */ class FakeString : public String { public: FakeString(const char* string, size_t length) : String((char*) string, length, true) {} ~FakeString() { orphan(); } }; template class StringTable { public: StringTable() { init(10); } StringTable(size_t initialCapacity) { init(initialCapacity); } ~StringTable() { clear(); hashmapFree(mpMap); } void clear() { hashmapForEach(mpMap, freeKeyValue, this); } bool contains(String* pKey) { bool result = hashmapContainsKey(mpMap, pKey); return result; } V* get(String* pKey) { V* result = (V*) hashmapGet(mpMap, pKey); return result; } V* remove(String* pKey) { V* result = (V*) hashmapRemove(mpMap, pKey); return result; } V* put(String* pKey, V* value) { V* result = (V*) hashmapPut(mpMap, pKey, value); if (result) { // The key was not adopted by the map, so delete it here. delete pKey; } return result; } void forEach(bool (*callback)(String* key, V* value, void* context), void* context) { hashmapForEach(mpMap, (bool (*)(void*, void*, void*)) callback, context); } protected: void init(size_t initialCapacity) { mpMap = hashmapCreate(initialCapacity, hashFn, equalsFn); } static int hashFn(void* pKey) { String* pString = (String*) pKey; return hashmapHash(pString->getUnwrapped(), pString->len()); } static bool equalsFn(void* keyA, void* keyB) { String* pStringA = (String*) keyA; String* pStringB = (String*) keyB; return pStringA->len() == pStringB->len() && strcmp(pStringA->getUnwrapped(), pStringB->getUnwrapped()) == 0; } static bool freeKeyValue(void* key, void* value, void* context) { delete (String*) key; delete (V*) value; return true; } Hashmap* mpMap; }; class MacroTable : public StringTable { public: MacroTable() : StringTable(10) {} }; class KeywordTable { public: KeywordTable(){ mpMap = hashmapCreate(40, hashFn, equalsFn); put("int", TOK_INT); put("char", TOK_CHAR); put("void", TOK_VOID); put("if", TOK_IF); put("else", TOK_ELSE); put("while", TOK_WHILE); put("break", TOK_BREAK); put("return", TOK_RETURN); put("for", TOK_FOR); // TODO: remove these preprocessor-specific keywords. You should // be able to have symbols named pragma or define. put("pragma", TOK_PRAGMA); put("define", TOK_DEFINE); const char* unsupported[] = { "auto", "case", "const", "continue", "default", "do", "double", "enum", "extern", "float", "goto", "long", "register", "short", "signed", "sizeof", "static", "struct", "switch", "typedef", "union", "unsigned", "volatile", "_Bool", "_Complex", "_Imaginary", "inline", "restrict", 0}; for(int i = 0; unsupported[i]; i++) { put(unsupported[i], TOK_UNSUPPORTED_KEYWORD); } } ~KeywordTable() { hashmapFree(mpMap); } int get(String* key) { return (int) hashmapGet(mpMap, key->getUnwrapped()); } const char* lookupKeyFor(int value) { FindValContext context; context.key = 0; hashmapForEach(mpMap, findKeyFn, &context); return context.key; } private: void put(const char* kw, int val) { hashmapPut(mpMap, (void*) kw, (void*) val); } static int hashFn(void* pKey) { char* pString = (char*) pKey; return hashmapHash(pString, strlen(pString)); } static bool equalsFn(void* keyA, void* keyB) { const char* pStringA = (const char*) keyA; const char* pStringB = (const char*) keyB; return strcmp(pStringA, pStringB) == 0; } struct FindValContext { char* key; int value; }; static bool findKeyFn(void* key, void* value, void* context) { FindValContext* pContext = (FindValContext*) context; if ((int) value == pContext->value) { pContext->key = (char*) key; return false; } return true; } Hashmap* mpMap; }; template class Array { public: Array() { mpBase = 0; mUsed = 0; mSize = 0; } ~Array() { if (mpBase) { free(mpBase); } } E get(int i) { if (i < 0 || i > (int) mUsed) { // error("internal error: Index out of range"); return E(); } return mpBase[i]; } void set(int i, E val) { mpBase[i] = val; } void pop() { if (mUsed > 0) { mUsed -= 1; } else { // error("internal error: Popped empty stack."); } } void push(E item) { * ensure(1) = item; } size_t len() { return mUsed; } private: E* ensure(int n) { size_t newUsed = mUsed + n; if (newUsed > mSize) { size_t newSize = mSize * 2 + 10; if (newSize < newUsed) { newSize = newUsed; } mpBase = (E*) realloc(mpBase, sizeof(E) * newSize); mSize = newSize; } E* result = mpBase + mUsed; mUsed = newUsed; return result; } E* mpBase; size_t mUsed; size_t mSize; }; struct InputState { InputStream* pStream; int oldCh; }; struct VariableInfo { VariableInfo() { pAddress = 0; pForward = 0; } void* pAddress; void* pForward; // For a forward direction, linked list of data to fix up }; typedef StringTable SymbolTable; class SymbolStack { public: SymbolStack() { mLevel = 0; addEntry(); } void pushLevel() { mLevel++; } void popLevel() { mLevel--; Entry e = mStack.get(mStack.len()-1); if (mLevel < e.level) { mStack.pop(); delete e.pTable; } } VariableInfo* get(String* pName) { int len = mStack.len(); VariableInfo* v = NULL; int level = -1; for (int i = len - 1; i >= 0; i--) { Entry e = mStack.get(i); v = e.pTable->get(pName); if (v) { level = e.level; break; } } #if 0 fprintf(stderr, "Lookup %s %08x level %d\n", pName->getUnwrapped(), v, level); if (v) { fprintf(stderr, " %08x %08x\n", v->pAddress, v->pForward); } #endif return v; } VariableInfo* addLocal(String* pName) { int len = mStack.len(); if (mStack.get(len-1).level != mLevel) { addEntry(); len++; } return addImp(len-1, pName); } VariableInfo* addGlobal(String* pName) { return addImp(0, pName); } void forEachGlobal( bool (*callback)(String* key, VariableInfo* value, void* context), void* context) { mStack.get(0).pTable->forEach(callback, context); } private: VariableInfo* addImp(int entryIndex, String* pName) { Entry e = mStack.get(entryIndex); SymbolTable* pTable = e.pTable; if (pTable->contains(pName)) { return NULL; } VariableInfo* v = new VariableInfo(); delete pTable->put(pName, v); #if 0 fprintf(stderr, "Add \"%s\" %08x level %d\n", pName->getUnwrapped(), v, e.level); #endif return v; } void addEntry() { Entry e; e.level = mLevel; e.pTable = new SymbolTable(); mStack.push(e); } struct Entry { Entry() { level = 0; pTable = NULL; } int level; SymbolTable* pTable; }; int mLevel; Array mStack; }; int ch; // Current input character, or EOF intptr_t tok; // token intptr_t tokc; // token extra info int tokl; // token operator level intptr_t rsym; // return symbol intptr_t loc; // local variable index char* glo; // global variable index String mTokenString; char* dptr; // Macro state: Points to macro text during macro playback. int dch; // Macro state: Saves old value of ch during a macro playback. char* pGlobalBase; KeywordTable mKeywords; SymbolStack mSymbolTable; InputStream* file; CodeBuf codeBuf; CodeGenerator* pGen; MacroTable mMacros; Array mInputStateStack; String mErrorBuf; String mPragmas; int mPragmaStringCount; static const int ALLOC_SIZE = 99999; static const int TOK_DUMMY = 1; static const int TOK_NUM = 2; // 3..255 are character and/or operators // Keywords start at 0x100 and increase by 1 static const int TOK_KEYWORD = 0x100; static const int TOK_INT = TOK_KEYWORD + 0; static const int TOK_CHAR = TOK_KEYWORD + 1; static const int TOK_VOID = TOK_KEYWORD + 2; static const int TOK_IF = TOK_KEYWORD + 3; static const int TOK_ELSE = TOK_KEYWORD + 4; static const int TOK_WHILE = TOK_KEYWORD + 5; static const int TOK_BREAK = TOK_KEYWORD + 6; static const int TOK_RETURN = TOK_KEYWORD + 7; static const int TOK_FOR = TOK_KEYWORD + 8; static const int TOK_PRAGMA = TOK_KEYWORD + 9; static const int TOK_DEFINE = TOK_KEYWORD + 10; static const int TOK_UNSUPPORTED_KEYWORD = TOK_KEYWORD + 0xff; static const int TOK_UNDEFINED_SYMBOL = 0x200; // Symbols start at 0x300, but are really pointers to VariableInfo structs. static const int TOK_SYMBOL = 0x300; static const int LOCAL = 0x200; static const int SYM_FORWARD = 0; static const int SYM_DEFINE = 1; /* tokens in string heap */ static const int TAG_TOK = ' '; static const int OP_INCREMENT = 0; static const int OP_DECREMENT = 1; static const int OP_MUL = 2; static const int OP_DIV = 3; static const int OP_MOD = 4; static const int OP_PLUS = 5; static const int OP_MINUS = 6; static const int OP_SHIFT_LEFT = 7; static const int OP_SHIFT_RIGHT = 8; static const int OP_LESS_EQUAL = 9; static const int OP_GREATER_EQUAL = 10; static const int OP_LESS = 11; static const int OP_GREATER = 12; static const int OP_EQUALS = 13; static const int OP_NOT_EQUALS = 14; static const int OP_LOGICAL_AND = 15; static const int OP_LOGICAL_OR = 16; static const int OP_BIT_AND = 17; static const int OP_BIT_XOR = 18; static const int OP_BIT_OR = 19; static const int OP_BIT_NOT = 20; static const int OP_LOGICAL_NOT = 21; static const int OP_COUNT = 22; /* Operators are searched from front, the two-character operators appear * before the single-character operators with the same first character. * @ is used to pad out single-character operators. */ static const char* operatorChars; static const char operatorLevel[]; void pdef(int t) { mTokenString.append(t); } void inp() { if (dptr) { ch = *dptr++; if (ch == 0) { dptr = 0; ch = dch; } } else ch = file->getChar(); #if 0 printf("ch='%c' 0x%x\n", ch, ch); #endif } int isid() { return isalnum(ch) | (ch == '_'); } /* read a character constant, advances ch to after end of constant */ int getq() { int val = ch; if (ch == '\\') { inp(); if (isoctal(ch)) { // 1 to 3 octal characters. val = 0; for(int i = 0; i < 3; i++) { if (isoctal(ch)) { val = (val << 3) + ch - '0'; inp(); } } return val; } else if (ch == 'x' || ch == 'X') { // N hex chars inp(); if (! isxdigit(ch)) { error("'x' character escape requires at least one digit."); } else { val = 0; while (isxdigit(ch)) { int d = ch; if (isdigit(d)) { d -= '0'; } else if (d <= 'F') { d = d - 'A' + 10; } else { d = d - 'a' + 10; } val = (val << 4) + d; inp(); } } } else { int val = ch; switch (ch) { case 'a': val = '\a'; break; case 'b': val = '\b'; break; case 'f': val = '\f'; break; case 'n': val = '\n'; break; case 'r': val = '\r'; break; case 't': val = '\t'; break; case 'v': val = '\v'; break; case '\\': val = '\\'; break; case '\'': val = '\''; break; case '"': val = '"'; break; case '?': val = '?'; break; default: error("Undefined character escape %c", ch); break; } inp(); return val; } } else { inp(); } return val; } static bool isoctal(int ch) { return ch >= '0' && ch <= '7'; } void next() { int l, a; while (isspace(ch) | (ch == '#')) { if (ch == '#') { inp(); next(); if (tok == TOK_DEFINE) { doDefine(); } else if (tok == TOK_PRAGMA) { doPragma(); } else { error("Unsupported preprocessor directive \"%s\"", mTokenString.getUnwrapped()); } } inp(); } tokl = 0; tok = ch; /* encode identifiers & numbers */ if (isid()) { mTokenString.clear(); while (isid()) { pdef(ch); inp(); } if (isdigit(tok)) { tokc = strtol(mTokenString.getUnwrapped(), 0, 0); tok = TOK_NUM; } else { // Is this a macro? String* pValue = mMacros.get(&mTokenString); if (pValue) { // Yes, it is a macro dptr = pValue->getUnwrapped(); dch = ch; inp(); next(); } else { // Is this a keyword? int kwtok = mKeywords.get(&mTokenString); if (kwtok) { tok = kwtok; // fprintf(stderr, "tok= keyword %s %x\n", last_id, tok); } else { tok = (intptr_t) mSymbolTable.get(&mTokenString); if (!tok) { tok = TOK_UNDEFINED_SYMBOL; } // fprintf(stderr, "tok= symbol %s %x\n", last_id, tok); } } } } else { inp(); if (tok == '\'') { tok = TOK_NUM; tokc = getq(); if (ch != '\'') { error("Expected a ' character, got %c", ch); } else { inp(); } } else if ((tok == '/') & (ch == '*')) { inp(); while (ch && ch != EOF) { while (ch != '*' && ch != EOF) inp(); inp(); if (ch == '/') ch = 0; } if (ch == EOF) { error("End of file inside comment."); } inp(); next(); } else if ((tok == '/') & (ch == '/')) { inp(); while (ch && (ch != '\n') && (ch != EOF)) { inp(); } inp(); next(); } else { const char* t = operatorChars; int opIndex = 0; while ((l = *t++) != 0) { a = *t++; tokl = operatorLevel[opIndex]; tokc = opIndex; if ((l == tok) & ((a == ch) | (a == '@'))) { #if 0 printf("%c%c -> tokl=%d tokc=0x%x\n", l, a, tokl, tokc); #endif if (a == ch) { inp(); tok = TOK_DUMMY; /* dummy token for double tokens */ } break; } opIndex++; } if (l == 0) { tokl = 0; tokc = 0; } } } #if 0 { const char* p; printf("tok=0x%x ", tok); if (tok >= TOK_KEYWORD) { printf("'"); if (tok>= TOK_SYMBOL) p = sym_stk + 1 + ((char*) tok - (char*) pVarsBase) / 8; else { p = mKeywords.lookupKeyFor(tok); if (!p) { p = "unknown keyword"; } } while (*p != TAG_TOK && *p) printf("%c", *p++); printf("'\n"); } else if (tok == TOK_NUM) { printf("%d\n", tokc); } else { printf("'%c'\n", tok); } } #endif } void doDefine() { String* pName = new String(); while (isspace(ch)) { inp(); } while (isid()) { pName->append(ch); inp(); } if (ch == '(') { delete pName; error("Defines with arguments not supported"); return; } while (isspace(ch)) { inp(); } String* pValue = new String(); while (ch != '\n' && ch != EOF) { pValue->append(ch); inp(); } delete mMacros.put(pName, pValue); } void doPragma() { // # pragma name(val) int state = 0; while(ch != EOF && ch != '\n' && state < 10) { switch(state) { case 0: if (isspace(ch)) { inp(); } else { state++; } break; case 1: if (isalnum(ch)) { mPragmas.append(ch); inp(); } else if (ch == '(') { mPragmas.append(0); inp(); state++; } else { state = 11; } break; case 2: if (isalnum(ch)) { mPragmas.append(ch); inp(); } else if (ch == ')') { mPragmas.append(0); inp(); state = 10; } else { state = 11; } break; } } if(state != 10) { error("Unexpected pragma syntax"); } mPragmaStringCount += 2; } virtual void verror(const char* fmt, va_list ap) { mErrorBuf.printf("%ld: ", file->getLine()); mErrorBuf.vprintf(fmt, ap); mErrorBuf.printf("\n"); } void skip(intptr_t c) { if (tok != c) { error("'%c' expected", c); } next(); } /* l is one if '=' parsing wanted (quick hack) */ void unary(intptr_t l) { intptr_t n, t, a; int c; String tString; t = 0; n = 1; /* type of expression 0 = forward, 1 = value, other = lvalue */ if (tok == '\"') { pGen->li((int) glo); while (ch != '\"' && ch != EOF) { *allocGlobalSpace(1) = getq(); } if (ch != '\"') { error("Unterminated string constant."); } *glo = 0; /* align heap */ allocGlobalSpace((char*) (((intptr_t) glo + 4) & -4) - glo); inp(); next(); } else { c = tokl; a = tokc; t = tok; tString = mTokenString; next(); if (t == TOK_NUM) { pGen->li(a); } else if (c == 2) { /* -, +, !, ~ */ unary(0); pGen->clearR1(); if (t == '!') pGen->gcmp(a); else pGen->genOp(a); } else if (t == '(') { expr(); skip(')'); } else if (t == '*') { /* parse cast */ skip('('); t = tok; /* get type */ next(); /* skip int/char/void */ next(); /* skip '*' or '(' */ if (tok == '*') { /* function type */ skip('*'); skip(')'); skip('('); skip(')'); t = 0; } skip(')'); unary(0); if (tok == '=') { next(); pGen->pushR0(); expr(); pGen->popR1(); pGen->storeR0ToR1(t == TOK_INT); } else if (t) { pGen->loadR0FromR0(t == TOK_INT); } } else if (t == '&') { pGen->leaR0(*(int *) tok); next(); } else if (t == EOF ) { error("Unexpected EOF."); } else if (!checkSymbol(t, &tString)) { // Don't have to do anything special here, the error // message was printed by checkSymbol() above. } else { if (t == TOK_UNDEFINED_SYMBOL) { t = (intptr_t) mSymbolTable.addGlobal( new String(tString)); } n = (intptr_t) ((VariableInfo*) t)->pAddress; /* forward reference: try dlsym */ if (!n) { n = (intptr_t) dlsym(RTLD_DEFAULT, tString.getUnwrapped()); ((VariableInfo*) t)->pAddress = (void*) n; } if ((tok == '=') & l) { /* assignment */ next(); expr(); pGen->storeR0(n); } else if (tok != '(') { /* variable */ if (!n) { error("Undefined variable %s", tString.getUnwrapped()); } pGen->loadR0(n, tokl == 11, tokc); if (tokl == 11) { next(); } } } } /* function call */ if (tok == '(') { if (n == 1) pGen->pushR0(); /* push args and invert order */ a = pGen->beginFunctionCallArguments(); next(); l = 0; while (tok != ')' && tok != EOF) { expr(); pGen->storeR0ToArg(l); if (tok == ',') next(); l = l + 4; } pGen->endFunctionCallArguments(a, l); skip(')'); if (!n) { /* forward reference */ t = t + 4; *(int *) t = pGen->callForward(*(int *) t); } else if (n == 1) { pGen->callIndirect(l); } else { pGen->callRelative(n - codeBuf.getPC() - pGen->jumpOffset()); } pGen->adjustStackAfterCall(l, n == 1); } } void sum(int l) { intptr_t t, n, a; t = 0; if (l-- == 1) unary(1); else { sum(l); a = 0; while (l == tokl) { n = tok; t = tokc; next(); if (l > 8) { a = pGen->gtst(t == OP_LOGICAL_OR, a); /* && and || output code generation */ sum(l); } else { pGen->pushR0(); sum(l); pGen->popR1(); if ((l == 4) | (l == 5)) { pGen->gcmp(t); } else { pGen->genOp(t); } } } /* && and || output code generation */ if (a && l > 8) { a = pGen->gtst(t == OP_LOGICAL_OR, a); pGen->li(t != OP_LOGICAL_OR); pGen->gjmp(5); /* jmp $ + 5 (sizeof li, FIXME for ARM) */ pGen->gsym(a); pGen->li(t == OP_LOGICAL_OR); } } } void expr() { sum(11); } int test_expr() { expr(); return pGen->gtst(0, 0); } void block(intptr_t l, bool outermostFunctionBlock) { intptr_t a, n, t; if (tok == TOK_INT || tok == TOK_CHAR) { /* declarations */ localDeclarations(); } else if (tok == TOK_IF) { next(); skip('('); a = test_expr(); skip(')'); block(l, false); if (tok == TOK_ELSE) { next(); n = pGen->gjmp(0); /* jmp */ pGen->gsym(a); block(l, false); pGen->gsym(n); /* patch else jmp */ } else { pGen->gsym(a); /* patch if test */ } } else if ((tok == TOK_WHILE) | (tok == TOK_FOR)) { t = tok; next(); skip('('); if (t == TOK_WHILE) { n = codeBuf.getPC(); // top of loop, target of "next" iteration a = test_expr(); } else { if (tok != ';') expr(); skip(';'); n = codeBuf.getPC(); a = 0; if (tok != ';') a = test_expr(); skip(';'); if (tok != ')') { t = pGen->gjmp(0); expr(); pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset()); pGen->gsym(t); n = t + 4; } } skip(')'); block((intptr_t) &a, false); pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset()); /* jmp */ pGen->gsym(a); } else if (tok == '{') { if (! outermostFunctionBlock) { mSymbolTable.pushLevel(); } next(); while (tok != '}' && tok != EOF) block(l, false); skip('}'); if (! outermostFunctionBlock) { mSymbolTable.popLevel(); } } else { if (tok == TOK_RETURN) { next(); if (tok != ';') expr(); rsym = pGen->gjmp(rsym); /* jmp */ } else if (tok == TOK_BREAK) { next(); *(int *) l = pGen->gjmp(*(int *) l); } else if (tok != ';') expr(); skip(';'); } } typedef int Type; static const Type TY_UNKNOWN = 0; static const Type TY_INT = 1; static const Type TY_CHAR = 2; static const Type TY_VOID = 3; static const int TY_BASE_TYPE_MASK = 0xf; static const int TY_INDIRECTION_MASK = 0xf0; static const int TY_INDIRECTION_SHIFT = 4; static const int MAX_INDIRECTION_COUNT = 15; Type getBaseType(Type t) { return t & TY_BASE_TYPE_MASK; } int getIndirectionCount(Type t) { return (TY_INDIRECTION_MASK & t) >> TY_INDIRECTION_SHIFT; } void setIndirectionCount(Type& t, int count) { t = ((TY_INDIRECTION_MASK & (count << TY_INDIRECTION_SHIFT)) | (t & ~TY_INDIRECTION_MASK)); } bool acceptType(Type& t) { t = TY_UNKNOWN; if (tok == TOK_INT) { t = TY_INT; } else if (tok == TOK_CHAR) { t = TY_CHAR; } else if (tok == TOK_VOID) { t = TY_VOID; } else { return false; } next(); return true; } Type acceptPointerDeclaration(Type& base) { Type t = base; int indirectionCount = 0; while (tok == '*' && indirectionCount <= MAX_INDIRECTION_COUNT) { next(); indirectionCount++; } if (indirectionCount > MAX_INDIRECTION_COUNT) { error("Too many levels of pointer. Max %d", MAX_INDIRECTION_COUNT); } setIndirectionCount(t, indirectionCount); return t; } void expectType(Type& t) { if (!acceptType(t)) { error("Expected a type."); } } void addGlobalSymbol() { tok = (intptr_t) mSymbolTable.addGlobal( new String(mTokenString)); reportIfDuplicate(); } void reportIfDuplicate() { if (!tok) { error("Duplicate definition of %s", mTokenString.getUnwrapped()); } } void addLocalSymbol() { tok = (intptr_t) mSymbolTable.addLocal( new String(mTokenString)); reportIfDuplicate(); } void localDeclarations() { intptr_t a; Type base; while (acceptType(base)) { while (tok != ';' && tok != EOF) { Type t = acceptPointerDeclaration(t); int variableAddress = 0; if (checkSymbol()) { addLocalSymbol(); if (tok) { loc = loc + 4; variableAddress = -loc; ((VariableInfo*) tok)->pAddress = (void*) variableAddress; } } next(); if (tok == '=') { /* assignment */ next(); expr(); pGen->storeR0(variableAddress); } if (tok == ',') next(); } skip(';'); } } bool checkSymbol() { return checkSymbol(tok, &mTokenString); } bool checkSymbol(int token, String* pText) { bool result = token < EOF || token >= TOK_UNDEFINED_SYMBOL; if (!result) { String temp; if (token == EOF ) { temp.printf("EOF"); } else if (token == TOK_NUM) { temp.printf("numeric constant"); } else if (token >= 0 && token < 256) { temp.printf("char \'%c\'", token); } else if (token >= TOK_KEYWORD && token < TOK_UNSUPPORTED_KEYWORD) { temp.printf("keyword \"%s\"", pText->getUnwrapped()); } else { temp.printf("reserved keyword \"%s\"", pText->getUnwrapped()); } error("Expected symbol. Got %s", temp.getUnwrapped()); } return result; } void globalDeclarations() { while (tok != EOF) { Type base; expectType(base); Type t = acceptPointerDeclaration(t); if (tok >= 0 && tok < TOK_UNDEFINED_SYMBOL) { error("Unexpected token %d", tok); break; } if (tok == TOK_UNDEFINED_SYMBOL) { addGlobalSymbol(); } VariableInfo* name = (VariableInfo*) tok; if (name && name->pAddress) { error("Already defined global %s", mTokenString.getUnwrapped()); } next(); if (tok == ',' || tok == ';' || tok == '=') { // it's a variable declaration for(;;) { if (name) { name->pAddress = (int*) allocGlobalSpace(4); } if (tok == '=') { next(); if (tok == TOK_NUM) { if (name) { * (int*) name->pAddress = tokc; } next(); } else { error("Expected an integer constant"); } } if (tok != ',') { break; } skip(','); t = acceptPointerDeclaration(t); addGlobalSymbol(); name = (VariableInfo*) tok; next(); } skip(';'); } else { if (name) { /* patch forward references (XXX: does not work for function pointers) */ pGen->gsym((int) name->pForward); /* put function address */ name->pAddress = (void*) codeBuf.getPC(); } skip('('); mSymbolTable.pushLevel(); intptr_t a = 8; int argCount = 0; while (tok != ')' && tok != EOF) { Type aType; expectType(aType); aType = acceptPointerDeclaration(aType); if (checkSymbol()) { addLocalSymbol(); if (tok) { /* read param name and compute offset */ *(int *) tok = a; a = a + 4; } } next(); if (tok == ',') next(); argCount++; } skip(')'); rsym = loc = 0; a = pGen->functionEntry(argCount); block(0, true); pGen->gsym(rsym); pGen->functionExit(argCount, a, loc); mSymbolTable.popLevel(); } } } char* allocGlobalSpace(int bytes) { if (glo - pGlobalBase + bytes > ALLOC_SIZE) { error("Global space exhausted"); return NULL; } char* result = glo; glo += bytes; return result; } void cleanup() { if (pGlobalBase != 0) { free(pGlobalBase); pGlobalBase = 0; } if (pGen) { delete pGen; pGen = 0; } if (file) { delete file; file = 0; } } void clear() { tok = 0; tokc = 0; tokl = 0; ch = 0; rsym = 0; loc = 0; glo = 0; dptr = 0; dch = 0; file = 0; pGlobalBase = 0; pGen = 0; mPragmaStringCount = 0; } void setArchitecture(const char* architecture) { delete pGen; pGen = 0; if (architecture != NULL) { #ifdef PROVIDE_ARM_CODEGEN if (! pGen && strcmp(architecture, "arm") == 0) { pGen = new ARMCodeGenerator(); } #endif #ifdef PROVIDE_X86_CODEGEN if (! pGen && strcmp(architecture, "x86") == 0) { pGen = new X86CodeGenerator(); } #endif if (!pGen ) { error("Unknown architecture %s\n", architecture); } } if (pGen == NULL) { #if defined(DEFAULT_ARM_CODEGEN) pGen = new ARMCodeGenerator(); #elif defined(DEFAULT_X86_CODEGEN) pGen = new X86CodeGenerator(); #endif } if (pGen == NULL) { error("No code generator defined."); } else { pGen->setErrorSink(this); } } public: struct args { args() { architecture = 0; } const char* architecture; }; Compiler() { clear(); } ~Compiler() { cleanup(); } int compile(const char* text, size_t textLength) { int result; cleanup(); clear(); codeBuf.init(ALLOC_SIZE); setArchitecture(NULL); if (!pGen) { return -1; } #ifdef PROVIDE_TRACE_CODEGEN pGen = new TraceCodeGenerator(pGen); #endif pGen->setErrorSink(this); pGen->init(&codeBuf); file = new TextInputStream(text, textLength); pGlobalBase = (char*) calloc(1, ALLOC_SIZE); glo = pGlobalBase; inp(); next(); globalDeclarations(); checkForUndefinedForwardReferences(); result = pGen->finishCompile(); if (result == 0) { if (mErrorBuf.len()) { result = -2; } } return result; } void checkForUndefinedForwardReferences() { mSymbolTable.forEachGlobal(static_ufrcFn, this); } static bool static_ufrcFn(String* key, VariableInfo* value, void* context) { Compiler* pCompiler = (Compiler*) context; return pCompiler->undefinedForwardReferenceCheck(key, value); } bool undefinedForwardReferenceCheck(String* key, VariableInfo* value) { #if 0 fprintf(stderr, "%s 0x%8x 0x%08x\n", key->getUnwrapped(), value->pAddress, value->pForward); #endif if (!value->pAddress && value->pForward) { error("Undefined forward reference: %s", key->getUnwrapped()); } return true; } int dump(FILE* out) { fwrite(codeBuf.getBase(), 1, codeBuf.getSize(), out); return 0; } int disassemble(FILE* out) { return pGen->disassemble(out); } /* Look through the symbol table to find a symbol. * If found, return its value. */ void* lookup(const char* name) { String string(name, -1, false); VariableInfo* pVariableInfo = mSymbolTable.get(&string); if (pVariableInfo) { return pVariableInfo->pAddress; } return NULL; } void getPragmas(ACCsizei* actualStringCount, ACCsizei maxStringCount, ACCchar** strings) { int stringCount = mPragmaStringCount; if (actualStringCount) { *actualStringCount = stringCount; } if (stringCount > maxStringCount) { stringCount = maxStringCount; } if (strings) { char* pPragmas = mPragmas.getUnwrapped(); while (stringCount-- > 0) { *strings++ = pPragmas; pPragmas += strlen(pPragmas) + 1; } } } char* getErrorMessage() { return mErrorBuf.getUnwrapped(); } }; const char* Compiler::operatorChars = "++--*@/@%@+@-@<<>><=>=<@>@==!=&&||&@^@|@~@!@"; const char Compiler::operatorLevel[] = {11, 11, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, /* ==, != */ 9, 10, /* &&, || */ 6, 7, 8, /* & ^ | */ 2, 2 /* ~ ! */ }; #ifdef PROVIDE_ARM_CODEGEN FILE* Compiler::ARMCodeGenerator::disasmOut; #endif #ifdef PROVIDE_X86_CODEGEN const int Compiler::X86CodeGenerator::operatorHelper[] = { 0x1, // ++ 0xff, // -- 0xc1af0f, // * 0xf9f79991, // / 0xf9f79991, // % (With manual assist to swap results) 0xc801, // + 0xd8f7c829, // - 0xe0d391, // << 0xf8d391, // >> 0xe, // <= 0xd, // >= 0xc, // < 0xf, // > 0x4, // == 0x5, // != 0x0, // && 0x1, // || 0xc821, // & 0xc831, // ^ 0xc809, // | 0xd0f7, // ~ 0x4 // ! }; #endif struct ACCscript { ACCscript() { text = 0; textLength = 0; accError = ACC_NO_ERROR; } ~ACCscript() { delete text; } void setError(ACCenum error) { if (accError == ACC_NO_ERROR && error != ACC_NO_ERROR) { accError = error; } } ACCenum getError() { ACCenum result = accError; accError = ACC_NO_ERROR; return result; } Compiler compiler; char* text; int textLength; ACCenum accError; }; extern "C" ACCscript* accCreateScript() { return new ACCscript(); } extern "C" ACCenum accGetError( ACCscript* script ) { return script->getError(); } extern "C" void accDeleteScript(ACCscript* script) { delete script; } extern "C" void accScriptSource(ACCscript* script, ACCsizei count, const ACCchar ** string, const ACCint * length) { int totalLength = 0; for(int i = 0; i < count; i++) { int len = -1; const ACCchar* s = string[i]; if (length) { len = length[i]; } if (len < 0) { len = strlen(s); } totalLength += len; } delete script->text; char* text = new char[totalLength + 1]; script->text = text; script->textLength = totalLength; char* dest = text; for(int i = 0; i < count; i++) { int len = -1; const ACCchar* s = string[i]; if (length) { len = length[i]; } if (len < 0) { len = strlen(s); } memcpy(dest, s, len); dest += len; } text[totalLength] = '\0'; } extern "C" void accCompileScript(ACCscript* script) { int result = script->compiler.compile(script->text, script->textLength); if (result) { script->setError(ACC_INVALID_OPERATION); } } extern "C" void accGetScriptiv(ACCscript* script, ACCenum pname, ACCint * params) { switch (pname) { case ACC_INFO_LOG_LENGTH: *params = 0; break; } } extern "C" void accGetScriptInfoLog(ACCscript* script, ACCsizei maxLength, ACCsizei * length, ACCchar * infoLog) { char* message = script->compiler.getErrorMessage(); int messageLength = strlen(message) + 1; if (length) { *length = messageLength; } if (infoLog && maxLength > 0) { int trimmedLength = maxLength < messageLength ? maxLength : messageLength; memcpy(infoLog, message, trimmedLength); infoLog[trimmedLength] = 0; } } extern "C" void accGetScriptLabel(ACCscript* script, const ACCchar * name, ACCvoid ** address) { void* value = script->compiler.lookup(name); if (value) { *address = value; } else { script->setError(ACC_INVALID_VALUE); } } extern "C" void accGetPragmas(ACCscript* script, ACCsizei* actualStringCount, ACCsizei maxStringCount, ACCchar** strings){ script->compiler.getPragmas(actualStringCount, maxStringCount, strings); } extern "C" void accDisassemble(ACCscript* script) { script->compiler.disassemble(stderr); } } // namespace acc