The timeout has to be determined experimentally. Generally, it must be high enough to at least be the next instruction, and can be otherwise as low as performance reasons allow. This feature is for debugging only. Test: atest PermissiveMteTest Bug: 309604766 Change-Id: I54eff23374ebb239fd75b3b59ae72a7c33654454
916 lines
36 KiB
C++
916 lines
36 KiB
C++
/*
|
|
* Copyright 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "debuggerd/handler.h"
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <linux/futex.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <signal.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/capability.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/un.h>
|
|
#include <sys/wait.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <android-base/macros.h>
|
|
#include <android-base/parsebool.h>
|
|
#include <android-base/parseint.h>
|
|
#include <android-base/properties.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <async_safe/log.h>
|
|
#include <bionic/reserved_signals.h>
|
|
|
|
#include <libdebuggerd/utility.h>
|
|
|
|
#include "dump_type.h"
|
|
#include "protocol.h"
|
|
|
|
#include "handler/fallback.h"
|
|
|
|
using ::android::base::ParseBool;
|
|
using ::android::base::ParseBoolResult;
|
|
using ::android::base::Pipe;
|
|
|
|
// We muck with our fds in a 'thread' that doesn't share the same fd table.
|
|
// Close fds in that thread with a raw close syscall instead of going through libc.
|
|
struct FdsanBypassCloser {
|
|
static void Close(int fd) {
|
|
syscall(__NR_close, fd);
|
|
}
|
|
};
|
|
|
|
using unique_fd = android::base::unique_fd_impl<FdsanBypassCloser>;
|
|
|
|
// see man(2) prctl, specifically the section about PR_GET_NAME
|
|
#define MAX_TASK_NAME_LEN (16)
|
|
|
|
#if defined(__LP64__)
|
|
#define CRASH_DUMP_NAME "crash_dump64"
|
|
#else
|
|
#define CRASH_DUMP_NAME "crash_dump32"
|
|
#endif
|
|
|
|
#define CRASH_DUMP_PATH "/apex/com.android.runtime/bin/" CRASH_DUMP_NAME
|
|
|
|
// Wrappers that directly invoke the respective syscalls, in case the cached values are invalid.
|
|
#pragma GCC poison getpid gettid
|
|
static pid_t __getpid() {
|
|
return syscall(__NR_getpid);
|
|
}
|
|
|
|
static pid_t __gettid() {
|
|
return syscall(__NR_gettid);
|
|
}
|
|
|
|
static bool property_parse_bool(const char* name) {
|
|
const prop_info* pi = __system_property_find(name);
|
|
if (!pi) return false;
|
|
bool cookie = false;
|
|
__system_property_read_callback(
|
|
pi,
|
|
[](void* cookie, const char*, const char* value, uint32_t) {
|
|
*reinterpret_cast<bool*>(cookie) = ParseBool(value) == ParseBoolResult::kTrue;
|
|
},
|
|
&cookie);
|
|
return cookie;
|
|
}
|
|
|
|
static bool is_permissive_mte() {
|
|
// Environment variable for testing or local use from shell.
|
|
char* permissive_env = getenv("MTE_PERMISSIVE");
|
|
char process_sysprop_name[512];
|
|
async_safe_format_buffer(process_sysprop_name, sizeof(process_sysprop_name),
|
|
"persist.device_config.memory_safety_native.permissive.process.%s",
|
|
getprogname());
|
|
// DO NOT REPLACE this with GetBoolProperty. That uses std::string which allocates, so it is
|
|
// not async-safe, and this function gets used in a signal handler.
|
|
return property_parse_bool("persist.sys.mte.permissive") ||
|
|
property_parse_bool("persist.device_config.memory_safety_native.permissive.default") ||
|
|
property_parse_bool(process_sysprop_name) ||
|
|
(permissive_env && ParseBool(permissive_env) == ParseBoolResult::kTrue);
|
|
}
|
|
|
|
static bool parse_uint_with_error_reporting(const char* s, const char* name, int* v) {
|
|
if (android::base::ParseInt(s, v) && *v >= 0) {
|
|
return true;
|
|
}
|
|
async_safe_format_log(ANDROID_LOG_ERROR, "libc", "invalid %s: %s", name, s);
|
|
return false;
|
|
}
|
|
|
|
// We cannot use base::GetIntProperty, because that internally uses
|
|
// std::string, which allocates.
|
|
static bool property_parse_int(const char* name, int* out) {
|
|
const prop_info* pi = __system_property_find(name);
|
|
if (!pi) return false;
|
|
struct cookie_t {
|
|
int* out;
|
|
bool empty;
|
|
} cookie{out, true};
|
|
__system_property_read_callback(
|
|
pi,
|
|
[](void* raw_cookie, const char* name, const char* value, uint32_t) {
|
|
// Property is set to empty value, ignoring.
|
|
if (!*value) return;
|
|
cookie_t* cookie = reinterpret_cast<cookie_t*>(raw_cookie);
|
|
if (parse_uint_with_error_reporting(value, name, cookie->out)) cookie->empty = false;
|
|
},
|
|
&cookie);
|
|
return !cookie.empty;
|
|
}
|
|
|
|
static int permissive_mte_renable_timer() {
|
|
if (char* env = getenv("MTE_PERMISSIVE_REENABLE_TIME_CPUMS")) {
|
|
int v;
|
|
if (parse_uint_with_error_reporting(env, "MTE_PERMISSIVE_REENABLE_TIME_CPUMS", &v)) return v;
|
|
}
|
|
|
|
char process_sysprop_name[512];
|
|
async_safe_format_buffer(process_sysprop_name, sizeof(process_sysprop_name),
|
|
"persist.sys.mte.permissive_reenable_timer.process.%s", getprogname());
|
|
int v;
|
|
if (property_parse_int(process_sysprop_name, &v)) return v;
|
|
if (property_parse_int("persist.sys.mte.permissive_reenable_timer.default", &v)) return v;
|
|
char process_deviceconf_sysprop_name[512];
|
|
async_safe_format_buffer(
|
|
process_deviceconf_sysprop_name, sizeof(process_deviceconf_sysprop_name),
|
|
"persist.device_config.memory_safety_native.permissive_reenable_timer.process.%s",
|
|
getprogname());
|
|
if (property_parse_int(process_deviceconf_sysprop_name, &v)) return v;
|
|
if (property_parse_int(
|
|
"persist.device_config.memory_safety_native.permissive_reenable_timer.default", &v))
|
|
return v;
|
|
return 0;
|
|
}
|
|
|
|
static inline void futex_wait(volatile void* ftx, int value) {
|
|
syscall(__NR_futex, ftx, FUTEX_WAIT, value, nullptr, nullptr, 0);
|
|
}
|
|
|
|
class ErrnoRestorer {
|
|
public:
|
|
ErrnoRestorer() : saved_errno_(errno) {
|
|
}
|
|
|
|
~ErrnoRestorer() {
|
|
errno = saved_errno_;
|
|
}
|
|
|
|
private:
|
|
int saved_errno_;
|
|
};
|
|
|
|
extern "C" void* android_fdsan_get_fd_table();
|
|
extern "C" void debuggerd_fallback_handler(siginfo_t*, ucontext_t*, void*);
|
|
|
|
static debuggerd_callbacks_t g_callbacks;
|
|
|
|
// Mutex to ensure only one crashing thread dumps itself.
|
|
static pthread_mutex_t crash_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
// Don't use async_safe_fatal because it exits via abort, which might put us back into
|
|
// a signal handler.
|
|
static void __noreturn __printflike(1, 2) fatal(const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
async_safe_format_log_va_list(ANDROID_LOG_FATAL, "libc", fmt, args);
|
|
_exit(1);
|
|
}
|
|
|
|
static void __noreturn __printflike(1, 2) fatal_errno(const char* fmt, ...) {
|
|
int err = errno;
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
char buf[256];
|
|
async_safe_format_buffer_va_list(buf, sizeof(buf), fmt, args);
|
|
fatal("%s: %s", buf, strerror(err));
|
|
}
|
|
|
|
static bool get_main_thread_name(char* buf, size_t len) {
|
|
unique_fd fd(open("/proc/self/comm", O_RDONLY | O_CLOEXEC));
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
|
|
ssize_t rc = read(fd, buf, len);
|
|
if (rc == -1) {
|
|
return false;
|
|
} else if (rc == 0) {
|
|
// Should never happen?
|
|
return false;
|
|
}
|
|
|
|
// There's a trailing newline, replace it with a NUL.
|
|
buf[rc - 1] = '\0';
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Writes a summary of the signal to the log file. We do this so that, if
|
|
* for some reason we're not able to contact debuggerd, there is still some
|
|
* indication of the failure in the log.
|
|
*
|
|
* We could be here as a result of native heap corruption, or while a
|
|
* mutex is being held, so we don't want to use any libc functions that
|
|
* could allocate memory or hold a lock.
|
|
*/
|
|
static void log_signal_summary(const siginfo_t* si) {
|
|
char main_thread_name[MAX_TASK_NAME_LEN + 1];
|
|
if (!get_main_thread_name(main_thread_name, sizeof(main_thread_name))) {
|
|
strncpy(main_thread_name, "<unknown>", sizeof(main_thread_name));
|
|
}
|
|
|
|
if (si->si_signo == BIONIC_SIGNAL_DEBUGGER) {
|
|
async_safe_format_log(ANDROID_LOG_INFO, "libc", "Requested dump for pid %d (%s)", __getpid(),
|
|
main_thread_name);
|
|
return;
|
|
}
|
|
|
|
// Many signals don't have a sender or extra detail, but some do...
|
|
pid_t self_pid = __getpid();
|
|
char sender_desc[32] = {}; // " from pid 1234, uid 666"
|
|
if (signal_has_sender(si, self_pid)) {
|
|
get_signal_sender(sender_desc, sizeof(sender_desc), si);
|
|
}
|
|
char extra_desc[32] = {}; // ", fault addr 0x1234" or ", syscall 1234"
|
|
if (si->si_signo == SIGSYS && si->si_code == SYS_SECCOMP) {
|
|
async_safe_format_buffer(extra_desc, sizeof(extra_desc), ", syscall %d", si->si_syscall);
|
|
} else if (signal_has_si_addr(si)) {
|
|
async_safe_format_buffer(extra_desc, sizeof(extra_desc), ", fault addr %p", si->si_addr);
|
|
}
|
|
|
|
char thread_name[MAX_TASK_NAME_LEN + 1]; // one more for termination
|
|
if (prctl(PR_GET_NAME, reinterpret_cast<unsigned long>(thread_name), 0, 0, 0) != 0) {
|
|
strcpy(thread_name, "<name unknown>");
|
|
} else {
|
|
// short names are null terminated by prctl, but the man page
|
|
// implies that 16 byte names are not.
|
|
thread_name[MAX_TASK_NAME_LEN] = 0;
|
|
}
|
|
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
|
|
"Fatal signal %d (%s), code %d (%s%s)%s in tid %d (%s), pid %d (%s)",
|
|
si->si_signo, get_signame(si), si->si_code, get_sigcode(si), sender_desc,
|
|
extra_desc, __gettid(), thread_name, self_pid, main_thread_name);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the handler for signal "signum" has SA_SIGINFO set.
|
|
*/
|
|
static bool have_siginfo(int signum) {
|
|
struct sigaction old_action;
|
|
if (sigaction(signum, nullptr, &old_action) < 0) {
|
|
async_safe_format_log(ANDROID_LOG_WARN, "libc", "Failed testing for SA_SIGINFO: %s",
|
|
strerror(errno));
|
|
return false;
|
|
}
|
|
return (old_action.sa_flags & SA_SIGINFO) != 0;
|
|
}
|
|
|
|
static void raise_caps() {
|
|
// Raise CapInh to match CapPrm, so that we can set the ambient bits.
|
|
__user_cap_header_struct capheader;
|
|
memset(&capheader, 0, sizeof(capheader));
|
|
capheader.version = _LINUX_CAPABILITY_VERSION_3;
|
|
capheader.pid = 0;
|
|
|
|
__user_cap_data_struct capdata[2];
|
|
if (capget(&capheader, &capdata[0]) == -1) {
|
|
fatal_errno("capget failed");
|
|
}
|
|
|
|
if (capdata[0].permitted != capdata[0].inheritable ||
|
|
capdata[1].permitted != capdata[1].inheritable) {
|
|
capdata[0].inheritable = capdata[0].permitted;
|
|
capdata[1].inheritable = capdata[1].permitted;
|
|
|
|
if (capset(&capheader, &capdata[0]) == -1) {
|
|
async_safe_format_log(ANDROID_LOG_ERROR, "libc", "capset failed: %s", strerror(errno));
|
|
}
|
|
}
|
|
|
|
// Set the ambient capability bits so that crash_dump gets all of our caps and can ptrace us.
|
|
uint64_t capmask = capdata[0].inheritable;
|
|
capmask |= static_cast<uint64_t>(capdata[1].inheritable) << 32;
|
|
for (unsigned long i = 0; i < 64; ++i) {
|
|
if (capmask & (1ULL << i)) {
|
|
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0, 0) != 0) {
|
|
async_safe_format_log(ANDROID_LOG_ERROR, "libc",
|
|
"failed to raise ambient capability %lu: %s", i, strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Double-clone, with CLONE_FILES to share the file descriptor table for kcmp validation.
|
|
// Returns 0 in the orphaned child, the pid of the orphan in the original process, or -1 on failure.
|
|
static void create_vm_process() {
|
|
pid_t first = clone(nullptr, nullptr, CLONE_FILES, nullptr);
|
|
if (first == -1) {
|
|
fatal_errno("failed to clone vm process");
|
|
} else if (first == 0) {
|
|
drop_capabilities();
|
|
|
|
if (clone(nullptr, nullptr, CLONE_FILES, nullptr) == -1) {
|
|
_exit(errno);
|
|
}
|
|
|
|
// crash_dump is ptracing both sides of the fork; it'll let the parent exit,
|
|
// but keep the orphan stopped to peek at its memory.
|
|
|
|
// There appears to be a bug in the kernel where our death causes SIGHUP to
|
|
// be sent to our process group if we exit while it has stopped jobs (e.g.
|
|
// because of wait_for_debugger). Use setsid to create a new process group to
|
|
// avoid hitting this.
|
|
setsid();
|
|
|
|
_exit(0);
|
|
}
|
|
|
|
int status;
|
|
if (TEMP_FAILURE_RETRY(waitpid(first, &status, __WCLONE)) != first) {
|
|
fatal_errno("failed to waitpid in double fork");
|
|
} else if (!WIFEXITED(status)) {
|
|
fatal("intermediate process didn't exit cleanly in double fork (status = %d)", status);
|
|
} else if (WEXITSTATUS(status)) {
|
|
fatal("second clone failed: %s", strerror(WEXITSTATUS(status)));
|
|
}
|
|
}
|
|
|
|
struct debugger_thread_info {
|
|
pid_t crashing_tid;
|
|
pid_t pseudothread_tid;
|
|
siginfo_t* siginfo;
|
|
void* ucontext;
|
|
debugger_process_info process_info;
|
|
};
|
|
|
|
// Logging and contacting debuggerd requires free file descriptors, which we might not have.
|
|
// Work around this by spawning a "thread" that shares its parent's address space, but not its file
|
|
// descriptor table, so that we can close random file descriptors without affecting the original
|
|
// process. Note that this doesn't go through pthread_create, so TLS is shared with the spawning
|
|
// process.
|
|
static void* pseudothread_stack;
|
|
|
|
static DebuggerdDumpType get_dump_type(const debugger_thread_info* thread_info) {
|
|
if (thread_info->siginfo->si_signo == BIONIC_SIGNAL_DEBUGGER &&
|
|
thread_info->siginfo->si_value.sival_int) {
|
|
return kDebuggerdNativeBacktrace;
|
|
}
|
|
|
|
return kDebuggerdTombstoneProto;
|
|
}
|
|
|
|
static int debuggerd_dispatch_pseudothread(void* arg) {
|
|
debugger_thread_info* thread_info = static_cast<debugger_thread_info*>(arg);
|
|
|
|
for (int i = 0; i < 1024; ++i) {
|
|
// Don't use close to avoid bionic's file descriptor ownership checks.
|
|
syscall(__NR_close, i);
|
|
}
|
|
|
|
int devnull = TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR));
|
|
if (devnull == -1) {
|
|
fatal_errno("failed to open /dev/null");
|
|
} else if (devnull != 0) {
|
|
fatal_errno("expected /dev/null fd to be 0, actually %d", devnull);
|
|
}
|
|
|
|
// devnull will be 0.
|
|
TEMP_FAILURE_RETRY(dup2(devnull, 1));
|
|
TEMP_FAILURE_RETRY(dup2(devnull, 2));
|
|
|
|
unique_fd input_read, input_write;
|
|
unique_fd output_read, output_write;
|
|
if (!Pipe(&input_read, &input_write) != 0 || !Pipe(&output_read, &output_write)) {
|
|
fatal_errno("failed to create pipe");
|
|
}
|
|
|
|
uint32_t version;
|
|
ssize_t expected;
|
|
|
|
// ucontext_t is absurdly large on AArch64, so piece it together manually with writev.
|
|
struct iovec iovs[4] = {
|
|
{.iov_base = &version, .iov_len = sizeof(version)},
|
|
{.iov_base = thread_info->siginfo, .iov_len = sizeof(siginfo_t)},
|
|
{.iov_base = thread_info->ucontext, .iov_len = sizeof(ucontext_t)},
|
|
};
|
|
|
|
constexpr size_t kHeaderSize = sizeof(version) + sizeof(siginfo_t) + sizeof(ucontext_t);
|
|
|
|
if (thread_info->process_info.fdsan_table) {
|
|
// Dynamic executables always use version 4. There is no need to increment the version number if
|
|
// the format changes, because the sender (linker) and receiver (crash_dump) are version locked.
|
|
version = 4;
|
|
expected = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataDynamic);
|
|
|
|
static_assert(sizeof(CrashInfoHeader) + sizeof(CrashInfoDataDynamic) ==
|
|
kHeaderSize + sizeof(thread_info->process_info),
|
|
"Wire protocol structs do not match the data sent.");
|
|
#define ASSERT_SAME_OFFSET(MEMBER1, MEMBER2) \
|
|
static_assert(sizeof(CrashInfoHeader) + offsetof(CrashInfoDataDynamic, MEMBER1) == \
|
|
kHeaderSize + offsetof(debugger_process_info, MEMBER2), \
|
|
"Wire protocol offset does not match data sent: " #MEMBER1);
|
|
ASSERT_SAME_OFFSET(fdsan_table_address, fdsan_table);
|
|
ASSERT_SAME_OFFSET(gwp_asan_state, gwp_asan_state);
|
|
ASSERT_SAME_OFFSET(gwp_asan_metadata, gwp_asan_metadata);
|
|
ASSERT_SAME_OFFSET(scudo_stack_depot, scudo_stack_depot);
|
|
ASSERT_SAME_OFFSET(scudo_region_info, scudo_region_info);
|
|
ASSERT_SAME_OFFSET(scudo_ring_buffer, scudo_ring_buffer);
|
|
ASSERT_SAME_OFFSET(scudo_ring_buffer_size, scudo_ring_buffer_size);
|
|
ASSERT_SAME_OFFSET(scudo_stack_depot_size, scudo_stack_depot_size);
|
|
ASSERT_SAME_OFFSET(recoverable_crash, recoverable_crash);
|
|
ASSERT_SAME_OFFSET(crash_detail_page, crash_detail_page);
|
|
#undef ASSERT_SAME_OFFSET
|
|
|
|
iovs[3] = {.iov_base = &thread_info->process_info,
|
|
.iov_len = sizeof(thread_info->process_info)};
|
|
} else {
|
|
// Static executables always use version 1.
|
|
version = 1;
|
|
expected = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataStatic);
|
|
|
|
static_assert(
|
|
sizeof(CrashInfoHeader) + sizeof(CrashInfoDataStatic) == kHeaderSize + sizeof(uintptr_t),
|
|
"Wire protocol structs do not match the data sent.");
|
|
|
|
iovs[3] = {.iov_base = &thread_info->process_info.abort_msg, .iov_len = sizeof(uintptr_t)};
|
|
}
|
|
errno = 0;
|
|
if (fcntl(output_write.get(), F_SETPIPE_SZ, expected) < static_cast<int>(expected)) {
|
|
fatal_errno("failed to set pipe buffer size");
|
|
}
|
|
|
|
ssize_t rc = TEMP_FAILURE_RETRY(writev(output_write.get(), iovs, arraysize(iovs)));
|
|
if (rc == -1) {
|
|
fatal_errno("failed to write crash info");
|
|
} else if (rc != expected) {
|
|
fatal("failed to write crash info, wrote %zd bytes, expected %zd", rc, expected);
|
|
}
|
|
|
|
// Don't use fork(2) to avoid calling pthread_atfork handlers.
|
|
pid_t crash_dump_pid = _Fork();
|
|
if (crash_dump_pid == -1) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
|
|
"failed to fork in debuggerd signal handler: %s", strerror(errno));
|
|
} else if (crash_dump_pid == 0) {
|
|
TEMP_FAILURE_RETRY(dup2(input_write.get(), STDOUT_FILENO));
|
|
TEMP_FAILURE_RETRY(dup2(output_read.get(), STDIN_FILENO));
|
|
input_read.reset();
|
|
input_write.reset();
|
|
output_read.reset();
|
|
output_write.reset();
|
|
|
|
raise_caps();
|
|
|
|
char main_tid[10];
|
|
char pseudothread_tid[10];
|
|
char debuggerd_dump_type[10];
|
|
async_safe_format_buffer(main_tid, sizeof(main_tid), "%d", thread_info->crashing_tid);
|
|
async_safe_format_buffer(pseudothread_tid, sizeof(pseudothread_tid), "%d",
|
|
thread_info->pseudothread_tid);
|
|
async_safe_format_buffer(debuggerd_dump_type, sizeof(debuggerd_dump_type), "%d",
|
|
get_dump_type(thread_info));
|
|
|
|
execle(CRASH_DUMP_PATH, CRASH_DUMP_NAME, main_tid, pseudothread_tid, debuggerd_dump_type,
|
|
nullptr, nullptr);
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to exec crash_dump helper: %s",
|
|
strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
input_write.reset();
|
|
output_read.reset();
|
|
|
|
// crash_dump will ptrace and pause all of our threads, and then write to the pipe to tell
|
|
// us to fork off a process to read memory from.
|
|
char buf[4];
|
|
rc = TEMP_FAILURE_RETRY(read(input_read.get(), &buf, sizeof(buf)));
|
|
|
|
bool success = false;
|
|
if (rc == 1 && buf[0] == '\1') {
|
|
// crash_dump successfully started, and is ptracing us.
|
|
// Fork off a copy of our address space for it to use.
|
|
create_vm_process();
|
|
success = true;
|
|
} else {
|
|
// Something went wrong, log it.
|
|
if (rc == -1) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "read of IPC pipe failed: %s",
|
|
strerror(errno));
|
|
} else if (rc == 0) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
|
|
"crash_dump helper failed to exec, or was killed");
|
|
} else if (rc != 1) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
|
|
"read of IPC pipe returned unexpected value: %zd", rc);
|
|
} else if (buf[0] != '\1') {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper reported failure");
|
|
}
|
|
}
|
|
|
|
// Don't leave a zombie child.
|
|
int status;
|
|
if (TEMP_FAILURE_RETRY(waitpid(crash_dump_pid, &status, 0)) == -1) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to wait for crash_dump helper: %s",
|
|
strerror(errno));
|
|
} else if (WIFSTOPPED(status) || WIFSIGNALED(status)) {
|
|
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper crashed or stopped");
|
|
}
|
|
|
|
if (success) {
|
|
if (thread_info->siginfo->si_signo != BIONIC_SIGNAL_DEBUGGER) {
|
|
// For crashes, we don't need to minimize pause latency.
|
|
// Wait for the dump to complete before having the process exit, to avoid being murdered by
|
|
// ActivityManager or init.
|
|
TEMP_FAILURE_RETRY(read(input_read, &buf, sizeof(buf)));
|
|
}
|
|
}
|
|
|
|
return success ? 0 : 1;
|
|
}
|
|
|
|
static void resend_signal(siginfo_t* info) {
|
|
// Signals can either be fatal or nonfatal.
|
|
// For fatal signals, crash_dump will send us the signal we crashed with
|
|
// before resuming us, so that processes using waitpid on us will see that we
|
|
// exited with the correct exit status (e.g. so that sh will report
|
|
// "Segmentation fault" instead of "Killed"). For this to work, we need
|
|
// to deregister our signal handler for that signal before continuing.
|
|
if (info->si_signo != BIONIC_SIGNAL_DEBUGGER) {
|
|
signal(info->si_signo, SIG_DFL);
|
|
int rc = syscall(SYS_rt_tgsigqueueinfo, __getpid(), __gettid(), info->si_signo, info);
|
|
if (rc != 0) {
|
|
fatal_errno("failed to resend signal during crash");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handler that does crash dumping by forking and doing the processing in the child.
|
|
// Do this by ptracing the relevant thread, and then execing debuggerd to do the actual dump.
|
|
static void debuggerd_signal_handler(int signal_number, siginfo_t* info, void* context) {
|
|
// Make sure we don't change the value of errno, in case a signal comes in between the process
|
|
// making a syscall and checking errno.
|
|
ErrnoRestorer restorer;
|
|
|
|
auto *ucontext = static_cast<ucontext_t*>(context);
|
|
|
|
// It's possible somebody cleared the SA_SIGINFO flag, which would mean
|
|
// our "info" arg holds an undefined value.
|
|
if (!have_siginfo(signal_number)) {
|
|
info = nullptr;
|
|
}
|
|
|
|
struct siginfo dummy_info = {};
|
|
if (!info) {
|
|
memset(&dummy_info, 0, sizeof(dummy_info));
|
|
dummy_info.si_signo = signal_number;
|
|
dummy_info.si_code = SI_USER;
|
|
dummy_info.si_pid = __getpid();
|
|
dummy_info.si_uid = getuid();
|
|
info = &dummy_info;
|
|
} else if (info->si_code >= 0 || info->si_code == SI_TKILL) {
|
|
// rt_tgsigqueueinfo(2)'s documentation appears to be incorrect on kernels
|
|
// that contain commit 66dd34a (3.9+). The manpage claims to only allow
|
|
// negative si_code values that are not SI_TKILL, but 66dd34a changed the
|
|
// check to allow all si_code values in calls coming from inside the house.
|
|
}
|
|
|
|
debugger_process_info process_info = {};
|
|
if (g_callbacks.get_process_info) {
|
|
process_info = g_callbacks.get_process_info();
|
|
}
|
|
uintptr_t si_val = reinterpret_cast<uintptr_t>(info->si_ptr);
|
|
if (signal_number == BIONIC_SIGNAL_DEBUGGER) {
|
|
// Applications can set abort messages via android_set_abort_message without
|
|
// actually aborting; ignore those messages in non-fatal dumps.
|
|
process_info.abort_msg = nullptr;
|
|
if (info->si_code == SI_QUEUE && info->si_pid == __getpid()) {
|
|
// Allow for the abort message to be explicitly specified via the sigqueue value.
|
|
// Keep the bottom bit intact for representing whether we want a backtrace or a tombstone.
|
|
if (si_val != kDebuggerdFallbackSivalUintptrRequestDump) {
|
|
process_info.abort_msg = reinterpret_cast<void*>(si_val & ~1);
|
|
info->si_ptr = reinterpret_cast<void*>(si_val & 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
gwp_asan_callbacks_t gwp_asan_callbacks = {};
|
|
bool recoverable_gwp_asan_crash = false;
|
|
if (g_callbacks.get_gwp_asan_callbacks != nullptr) {
|
|
// GWP-ASan catches use-after-free and heap-buffer-overflow by using PROT_NONE
|
|
// guard pages, which lead to SEGV. Normally, debuggerd prints a bug report
|
|
// and the process terminates, but in some cases, we actually want to print
|
|
// the bug report and let the signal handler return, and restart the process.
|
|
// In order to do that, we need to disable GWP-ASan's guard pages. The
|
|
// following callbacks handle this case.
|
|
gwp_asan_callbacks = g_callbacks.get_gwp_asan_callbacks();
|
|
if (signal_number == SIGSEGV && signal_has_si_addr(info) &&
|
|
gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery &&
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report &&
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report &&
|
|
gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery(info->si_addr)) {
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report(info->si_addr);
|
|
recoverable_gwp_asan_crash = true;
|
|
process_info.recoverable_crash = true;
|
|
}
|
|
}
|
|
|
|
if (info->si_signo == SIGSEGV &&
|
|
(info->si_code == SEGV_MTESERR || info->si_code == SEGV_MTEAERR) && is_permissive_mte()) {
|
|
process_info.recoverable_crash = true;
|
|
// If we are in permissive MTE mode, we do not crash, but instead disable MTE on this thread,
|
|
// and then let the failing instruction be retried. The second time should work (except
|
|
// if there is another non-MTE fault).
|
|
int tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
|
|
if (tagged_addr_ctrl < 0) {
|
|
fatal_errno("failed to PR_GET_TAGGED_ADDR_CTRL");
|
|
}
|
|
int previous = tagged_addr_ctrl & PR_MTE_TCF_MASK;
|
|
tagged_addr_ctrl = (tagged_addr_ctrl & ~PR_MTE_TCF_MASK) | PR_MTE_TCF_NONE;
|
|
if (prctl(PR_SET_TAGGED_ADDR_CTRL, tagged_addr_ctrl, 0, 0, 0) < 0) {
|
|
fatal_errno("failed to PR_SET_TAGGED_ADDR_CTRL");
|
|
}
|
|
if (int reenable_timer = permissive_mte_renable_timer()) {
|
|
async_safe_format_log(ANDROID_LOG_ERROR, "libc",
|
|
"MTE ERROR DETECTED BUT RUNNING IN PERMISSIVE MODE. CONTINUING WITH "
|
|
"MTE DISABLED FOR %d MS OF CPU TIME.",
|
|
reenable_timer);
|
|
timer_t timerid{};
|
|
struct sigevent sev {};
|
|
sev.sigev_signo = BIONIC_ENABLE_MTE;
|
|
sev.sigev_notify = SIGEV_THREAD_ID;
|
|
sev.sigev_value.sival_int = previous;
|
|
sev.sigev_notify_thread_id = __gettid();
|
|
// This MUST be CLOCK_THREAD_CPUTIME_ID. If we used CLOCK_MONOTONIC we could get stuck
|
|
// in an endless loop of re-running the same instruction, calling this signal handler,
|
|
// and re-enabling MTE before we had a chance to re-run the instruction.
|
|
if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &timerid) == -1) {
|
|
fatal_errno("timer_create() failed");
|
|
}
|
|
struct itimerspec its {};
|
|
its.it_value.tv_sec = reenable_timer / 1000;
|
|
its.it_value.tv_nsec = (reenable_timer % 1000) * 1000000;
|
|
|
|
if (timer_settime(timerid, 0, &its, nullptr) == -1) {
|
|
fatal_errno("timer_settime() failed");
|
|
}
|
|
} else {
|
|
async_safe_format_log(
|
|
ANDROID_LOG_ERROR, "libc",
|
|
"MTE ERROR DETECTED BUT RUNNING IN PERMISSIVE MODE. CONTINUING WITH MTE DISABLED.");
|
|
}
|
|
pthread_mutex_unlock(&crash_mutex);
|
|
}
|
|
|
|
// If sival_int is ~0, it means that the fallback handler has been called
|
|
// once before and this function is being called again to dump the stack
|
|
// of a specific thread. It is possible that the prctl call might return 1,
|
|
// then return 0 in subsequent calls, so check the sival_int to determine if
|
|
// the fallback handler should be called first.
|
|
bool no_new_privs = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0) == 1;
|
|
if (si_val == kDebuggerdFallbackSivalUintptrRequestDump || no_new_privs) {
|
|
// This check might be racy if another thread sets NO_NEW_PRIVS, but this should be unlikely,
|
|
// you can only set NO_NEW_PRIVS to 1, and the effect should be at worst a single missing
|
|
// ANR trace.
|
|
debuggerd_fallback_handler(info, ucontext, process_info.abort_msg);
|
|
if (no_new_privs && recoverable_gwp_asan_crash) {
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
|
|
return;
|
|
}
|
|
resend_signal(info);
|
|
return;
|
|
}
|
|
|
|
// Only allow one thread to handle a signal at a time.
|
|
int ret = pthread_mutex_lock(&crash_mutex);
|
|
if (ret != 0) {
|
|
async_safe_format_log(ANDROID_LOG_INFO, "libc", "pthread_mutex_lock failed: %s", strerror(ret));
|
|
return;
|
|
}
|
|
|
|
log_signal_summary(info);
|
|
|
|
// If we got here due to the signal BIONIC_SIGNAL_DEBUGGER, it's possible
|
|
// this is not the main thread, which can cause the intercept logic to fail
|
|
// since the intercept is only looking for the main thread. In this case,
|
|
// setting crashing_tid to pid instead of the current thread's tid avoids
|
|
// the problem.
|
|
debugger_thread_info thread_info = {
|
|
.crashing_tid = (signal_number == BIONIC_SIGNAL_DEBUGGER) ? __getpid() : __gettid(),
|
|
.pseudothread_tid = -1,
|
|
.siginfo = info,
|
|
.ucontext = context,
|
|
.process_info = process_info,
|
|
};
|
|
|
|
// Set PR_SET_DUMPABLE to 1, so that crash_dump can ptrace us.
|
|
int orig_dumpable = prctl(PR_GET_DUMPABLE);
|
|
if (prctl(PR_SET_DUMPABLE, 1) != 0) {
|
|
fatal_errno("failed to set dumpable");
|
|
}
|
|
|
|
// On kernels with yama_ptrace enabled, also allow any process to attach.
|
|
bool restore_orig_ptracer = true;
|
|
if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
|
|
if (errno == EINVAL) {
|
|
// This kernel does not support PR_SET_PTRACER_ANY, or Yama is not enabled.
|
|
restore_orig_ptracer = false;
|
|
} else {
|
|
fatal_errno("failed to set traceable");
|
|
}
|
|
}
|
|
|
|
// Essentially pthread_create without CLONE_FILES, so we still work during file descriptor
|
|
// exhaustion.
|
|
pid_t child_pid =
|
|
clone(debuggerd_dispatch_pseudothread, pseudothread_stack,
|
|
CLONE_THREAD | CLONE_SIGHAND | CLONE_VM | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID,
|
|
&thread_info, nullptr, nullptr, &thread_info.pseudothread_tid);
|
|
if (child_pid == -1) {
|
|
fatal_errno("failed to spawn debuggerd dispatch thread");
|
|
}
|
|
|
|
// Wait for the child to start...
|
|
futex_wait(&thread_info.pseudothread_tid, -1);
|
|
|
|
// and then wait for it to terminate.
|
|
futex_wait(&thread_info.pseudothread_tid, child_pid);
|
|
|
|
// Restore PR_SET_DUMPABLE to its original value.
|
|
if (prctl(PR_SET_DUMPABLE, orig_dumpable) != 0) {
|
|
fatal_errno("failed to restore dumpable");
|
|
}
|
|
|
|
// Restore PR_SET_PTRACER to its original value.
|
|
if (restore_orig_ptracer && prctl(PR_SET_PTRACER, 0) != 0) {
|
|
fatal_errno("failed to restore traceable");
|
|
}
|
|
|
|
if (info->si_signo == BIONIC_SIGNAL_DEBUGGER) {
|
|
// If the signal is fatal, don't unlock the mutex to prevent other crashing threads from
|
|
// starting to dump right before our death.
|
|
pthread_mutex_unlock(&crash_mutex);
|
|
} else if (process_info.recoverable_crash) {
|
|
if (recoverable_gwp_asan_crash) {
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
|
|
}
|
|
pthread_mutex_unlock(&crash_mutex);
|
|
}
|
|
#ifdef __aarch64__
|
|
else if (info->si_signo == SIGSEGV && info->si_code == SEGV_MTEAERR && getppid() == 1) {
|
|
// Back channel to init (see system/core/init/service.cpp) to signal that
|
|
// this process crashed due to an ASYNC MTE fault and should be considered
|
|
// for upgrade to SYNC mode. We are re-using the ART profiler signal, which
|
|
// is always handled (ignored in native processes, handled for generating a
|
|
// dump in ART processes), so a process will never crash from this signal
|
|
// except from here.
|
|
// The kernel is not particularly receptive to adding this information:
|
|
// https://lore.kernel.org/all/20220909180617.374238-1-fmayer@google.com/, so we work around
|
|
// like this.
|
|
info->si_signo = BIONIC_SIGNAL_ART_PROFILER;
|
|
resend_signal(info);
|
|
}
|
|
#endif
|
|
else {
|
|
// Resend the signal, so that either the debugger or the parent's waitpid sees it.
|
|
resend_signal(info);
|
|
}
|
|
}
|
|
|
|
void debuggerd_init(debuggerd_callbacks_t* callbacks) {
|
|
if (callbacks) {
|
|
g_callbacks = *callbacks;
|
|
}
|
|
|
|
size_t thread_stack_pages = 8;
|
|
void* thread_stack_allocation = mmap(nullptr, getpagesize() * (thread_stack_pages + 2), PROT_NONE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
|
if (thread_stack_allocation == MAP_FAILED) {
|
|
fatal_errno("failed to allocate debuggerd thread stack");
|
|
}
|
|
|
|
char* stack = static_cast<char*>(thread_stack_allocation) + getpagesize();
|
|
if (mprotect(stack, getpagesize() * thread_stack_pages, PROT_READ | PROT_WRITE) != 0) {
|
|
fatal_errno("failed to mprotect debuggerd thread stack");
|
|
}
|
|
|
|
// Stack grows negatively, set it to the last byte in the page...
|
|
stack = (stack + thread_stack_pages * getpagesize() - 1);
|
|
// and align it.
|
|
stack -= 15;
|
|
pseudothread_stack = stack;
|
|
|
|
struct sigaction action;
|
|
memset(&action, 0, sizeof(action));
|
|
sigfillset(&action.sa_mask);
|
|
action.sa_sigaction = debuggerd_signal_handler;
|
|
action.sa_flags = SA_RESTART | SA_SIGINFO;
|
|
|
|
// Use the alternate signal stack if available so we can catch stack overflows.
|
|
action.sa_flags |= SA_ONSTACK;
|
|
|
|
#define SA_EXPOSE_TAGBITS 0x00000800
|
|
// Request that the kernel set tag bits in the fault address. This is necessary for diagnosing MTE
|
|
// faults.
|
|
action.sa_flags |= SA_EXPOSE_TAGBITS;
|
|
|
|
debuggerd_register_handlers(&action);
|
|
}
|
|
|
|
bool debuggerd_handle_gwp_asan_signal(int signal_number, siginfo_t* info, void* context) {
|
|
if (g_callbacks.get_gwp_asan_callbacks == nullptr) return false;
|
|
gwp_asan_callbacks_t gwp_asan_callbacks = g_callbacks.get_gwp_asan_callbacks();
|
|
if (gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery == nullptr ||
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report == nullptr ||
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report == nullptr ||
|
|
!gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery(info->si_addr)) {
|
|
return false;
|
|
}
|
|
|
|
// Only dump a crash report for the first GWP-ASan crash. ActivityManager
|
|
// doesn't like it when an app crashes multiple times, and is even more strict
|
|
// about an app crashing multiple times in a short time period. While the app
|
|
// won't crash fully when we do GWP-ASan recovery, ActivityManager still gets
|
|
// the information about the crash through the DropBoxManager service. If an
|
|
// app has multiple back-to-back GWP-ASan crashes, this would lead to the app
|
|
// being killed, which defeats the purpose of having the recoverable mode. To
|
|
// mitigate against this, only generate a debuggerd crash report for the first
|
|
// GWP-ASan crash encountered. We still need to do the patching up of the
|
|
// allocator though, so do that.
|
|
static pthread_mutex_t first_crash_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
pthread_mutex_lock(&first_crash_mutex);
|
|
static bool first_crash = true;
|
|
|
|
if (first_crash) {
|
|
// `debuggerd_signal_handler` will call
|
|
// `debuggerd_gwp_asan_(pre|post)_crash_report`, so no need to manually call
|
|
// them here.
|
|
debuggerd_signal_handler(signal_number, info, context);
|
|
first_crash = false;
|
|
} else {
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report(info->si_addr);
|
|
gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
|
|
}
|
|
|
|
pthread_mutex_unlock(&first_crash_mutex);
|
|
return true;
|
|
}
|
|
|
|
// When debuggerd's signal handler is the first handler called, it's great at
|
|
// handling the recoverable GWP-ASan and permissive MTE modes. For apps,
|
|
// sigchain (from libart) is always the first signal handler, and so the
|
|
// following function is what sigchain must call before processing the signal.
|
|
// This allows for processing of a potentially recoverable GWP-ASan or MTE
|
|
// crash. If the signal requires recovery, then dump a report (via the regular
|
|
// debuggerd hanndler), and patch up the allocator (in the case of GWP-ASan) or
|
|
// disable MTE on the thread, and allow the process to continue (indicated by
|
|
// returning 'true'). If the crash has nothing to do with GWP-ASan/MTE, or
|
|
// recovery isn't possible, return 'false'.
|
|
bool debuggerd_handle_signal(int signal_number, siginfo_t* info, void* context) {
|
|
if (signal_number != SIGSEGV) return false;
|
|
if (info->si_code == SEGV_MTEAERR || info->si_code == SEGV_MTESERR) {
|
|
if (!is_permissive_mte()) return false;
|
|
// Because permissive MTE disables MTE for the entire thread, we're less
|
|
// worried about getting a whole bunch of crashes in a row. ActivityManager
|
|
// doesn't like multiple native crashes for an app in a short period of time
|
|
// (see the comment about recoverable GWP-ASan in
|
|
// `debuggerd_handle_gwp_asan_signal`), but that shouldn't happen if MTE is
|
|
// disabled for the entire thread. This might need to be changed if there's
|
|
// some low-hanging bug that happens across multiple threads in quick
|
|
// succession.
|
|
debuggerd_signal_handler(signal_number, info, context);
|
|
return true;
|
|
}
|
|
|
|
if (!signal_has_si_addr(info)) return false;
|
|
return debuggerd_handle_gwp_asan_signal(signal_number, info, context);
|
|
}
|