There are only three places where the log buffer lock is not already
held when the reader lock is taken:
1) In LogReader, when a new reader connects
2) In LogReader, when a misbehaving reader disconnects
3) LogReaderThread::ThreadFunction()
1) and 2) happen sufficiently rarely that there's no impact if they
additionally held a global lock.
3) is refactored in this CL. Previously, it would do the below in a loop
1) Lock the reader lock then wait on a condition variable
2) Unlock the reader lock
3) Lock the log buffer lock in LogBuffer::FlushTo()
4) In each iteration in the LogBuffer::FlushTo() loop
1) Lock then unlock the reader lock in FilterSecondPass()
2) Unlock the log buffer lock to send the message, then re-lock it
5) Unlock the log buffer lock when leaving LogBuffer::FlushTo()
If these locks are collapsed into a single lock, then this simplifies to:
1) Lock the single lock then wait on a condition variable
2) In each iteration in the LogBuffer::FlushTo() loop
1) Unlock the single lock to send the message, then re-lock it
Collapsing both these locks into a single lock simplifes the code and
removes the overhead of acquiring the second lock, in the majority of
use cases where the first lock is already held.
Secondly, this lock will be a plain std::mutex instead of a RwLock.
RwLock's are appropriate when there is a substantial imbalance between
readers and writers and high contention, neither are true for logd.
Bug: 169736426
Test: logging unit tests
Change-Id: Ia511506f2d0935a5321c1b2f65569066f91ecb06
617 lines
24 KiB
C++
617 lines
24 KiB
C++
/*
|
|
* Copyright (C) 2012-2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
// for manual checking of stale entries during ChattyLogBuffer::erase()
|
|
//#define DEBUG_CHECK_FOR_STALE_ENTRIES
|
|
|
|
#include "ChattyLogBuffer.h"
|
|
|
|
#include <ctype.h>
|
|
#include <endian.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/user.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <limits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
#include <private/android_logger.h>
|
|
|
|
#include "LogUtils.h"
|
|
|
|
#ifndef __predict_false
|
|
#define __predict_false(exp) __builtin_expect((exp) != 0, 0)
|
|
#endif
|
|
|
|
ChattyLogBuffer::ChattyLogBuffer(LogReaderList* reader_list, LogTags* tags, PruneList* prune,
|
|
LogStatistics* stats)
|
|
: SimpleLogBuffer(reader_list, tags, stats), prune_(prune) {}
|
|
|
|
ChattyLogBuffer::~ChattyLogBuffer() {}
|
|
|
|
enum match_type { DIFFERENT, SAME, SAME_LIBLOG };
|
|
|
|
static enum match_type Identical(const LogBufferElement& elem, const LogBufferElement& last) {
|
|
ssize_t lenl = elem.msg_len();
|
|
if (lenl <= 0) return DIFFERENT; // value if this represents a chatty elem
|
|
ssize_t lenr = last.msg_len();
|
|
if (lenr <= 0) return DIFFERENT; // value if this represents a chatty elem
|
|
if (elem.uid() != last.uid()) return DIFFERENT;
|
|
if (elem.pid() != last.pid()) return DIFFERENT;
|
|
if (elem.tid() != last.tid()) return DIFFERENT;
|
|
|
|
// last is more than a minute old, stop squashing identical messages
|
|
if (elem.realtime().nsec() > (last.realtime().nsec() + 60 * NS_PER_SEC)) return DIFFERENT;
|
|
|
|
// Identical message
|
|
const char* msgl = elem.msg();
|
|
const char* msgr = last.msg();
|
|
if (lenl == lenr) {
|
|
if (!fastcmp<memcmp>(msgl, msgr, lenl)) return SAME;
|
|
// liblog tagged messages (content gets summed)
|
|
if (elem.log_id() == LOG_ID_EVENTS && lenl == sizeof(android_log_event_int_t) &&
|
|
!fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_int_t) - sizeof(int32_t)) &&
|
|
elem.GetTag() == LIBLOG_LOG_TAG) {
|
|
return SAME_LIBLOG;
|
|
}
|
|
}
|
|
|
|
// audit message (except sequence number) identical?
|
|
if (IsBinary(last.log_id()) &&
|
|
lenl > static_cast<ssize_t>(sizeof(android_log_event_string_t)) &&
|
|
lenr > static_cast<ssize_t>(sizeof(android_log_event_string_t))) {
|
|
if (fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_string_t) - sizeof(int32_t))) {
|
|
return DIFFERENT;
|
|
}
|
|
msgl += sizeof(android_log_event_string_t);
|
|
lenl -= sizeof(android_log_event_string_t);
|
|
msgr += sizeof(android_log_event_string_t);
|
|
lenr -= sizeof(android_log_event_string_t);
|
|
}
|
|
static const char avc[] = "): avc: ";
|
|
const char* avcl = android::strnstr(msgl, lenl, avc);
|
|
if (!avcl) return DIFFERENT;
|
|
lenl -= avcl - msgl;
|
|
const char* avcr = android::strnstr(msgr, lenr, avc);
|
|
if (!avcr) return DIFFERENT;
|
|
lenr -= avcr - msgr;
|
|
if (lenl != lenr) return DIFFERENT;
|
|
if (fastcmp<memcmp>(avcl + strlen(avc), avcr + strlen(avc), lenl - strlen(avc))) {
|
|
return DIFFERENT;
|
|
}
|
|
return SAME;
|
|
}
|
|
|
|
void ChattyLogBuffer::LogInternal(LogBufferElement&& elem) {
|
|
// b/137093665: don't coalesce security messages.
|
|
if (elem.log_id() == LOG_ID_SECURITY) {
|
|
SimpleLogBuffer::LogInternal(std::move(elem));
|
|
return;
|
|
}
|
|
int log_id = elem.log_id();
|
|
|
|
// Initialize last_logged_elements_ to a copy of elem if logging the first element for a log_id.
|
|
if (!last_logged_elements_[log_id]) {
|
|
last_logged_elements_[log_id].emplace(elem);
|
|
SimpleLogBuffer::LogInternal(std::move(elem));
|
|
return;
|
|
}
|
|
|
|
LogBufferElement& current_last = *last_logged_elements_[log_id];
|
|
enum match_type match = Identical(elem, current_last);
|
|
|
|
if (match == DIFFERENT) {
|
|
if (duplicate_elements_[log_id]) {
|
|
// If we previously had 3+ identical messages, log the chatty message.
|
|
if (duplicate_elements_[log_id]->dropped_count() > 0) {
|
|
SimpleLogBuffer::LogInternal(std::move(*duplicate_elements_[log_id]));
|
|
}
|
|
duplicate_elements_[log_id].reset();
|
|
// Log the saved copy of the last identical message seen.
|
|
SimpleLogBuffer::LogInternal(std::move(current_last));
|
|
}
|
|
last_logged_elements_[log_id].emplace(elem);
|
|
SimpleLogBuffer::LogInternal(std::move(elem));
|
|
return;
|
|
}
|
|
|
|
// 2 identical message: set duplicate_elements_ appropriately.
|
|
if (!duplicate_elements_[log_id]) {
|
|
duplicate_elements_[log_id].emplace(std::move(current_last));
|
|
last_logged_elements_[log_id].emplace(std::move(elem));
|
|
return;
|
|
}
|
|
|
|
// 3+ identical LIBLOG event messages: coalesce them into last_logged_elements_.
|
|
if (match == SAME_LIBLOG) {
|
|
const android_log_event_int_t* current_last_event =
|
|
reinterpret_cast<const android_log_event_int_t*>(current_last.msg());
|
|
int64_t current_last_count = current_last_event->payload.data;
|
|
android_log_event_int_t* elem_event =
|
|
reinterpret_cast<android_log_event_int_t*>(const_cast<char*>(elem.msg()));
|
|
int64_t elem_count = elem_event->payload.data;
|
|
|
|
int64_t total = current_last_count + elem_count;
|
|
if (total > std::numeric_limits<int32_t>::max()) {
|
|
SimpleLogBuffer::LogInternal(std::move(current_last));
|
|
last_logged_elements_[log_id].emplace(std::move(elem));
|
|
return;
|
|
}
|
|
stats()->AddTotal(current_last.log_id(), current_last.msg_len());
|
|
elem_event->payload.data = total;
|
|
last_logged_elements_[log_id].emplace(std::move(elem));
|
|
return;
|
|
}
|
|
|
|
// 3+ identical messages (not LIBLOG) messages: increase the drop count.
|
|
uint16_t dropped_count = duplicate_elements_[log_id]->dropped_count();
|
|
if (dropped_count == std::numeric_limits<uint16_t>::max()) {
|
|
SimpleLogBuffer::LogInternal(std::move(*duplicate_elements_[log_id]));
|
|
dropped_count = 0;
|
|
}
|
|
// We're dropping the current_last log so add its stats to the total.
|
|
stats()->AddTotal(current_last.log_id(), current_last.msg_len());
|
|
// Use current_last for tracking the dropped count to always use the latest timestamp.
|
|
current_last.SetDropped(dropped_count + 1);
|
|
duplicate_elements_[log_id].emplace(std::move(current_last));
|
|
last_logged_elements_[log_id].emplace(std::move(elem));
|
|
}
|
|
|
|
LogBufferElementCollection::iterator ChattyLogBuffer::Erase(LogBufferElementCollection::iterator it,
|
|
bool coalesce) {
|
|
LogBufferElement& element = *it;
|
|
log_id_t id = element.log_id();
|
|
|
|
// Remove iterator references in the various lists that will become stale
|
|
// after the element is erased from the main logging list.
|
|
|
|
{ // start of scope for found iterator
|
|
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.GetTag() : element.uid();
|
|
LogBufferIteratorMap::iterator found = mLastWorst[id].find(key);
|
|
if ((found != mLastWorst[id].end()) && (it == found->second)) {
|
|
mLastWorst[id].erase(found);
|
|
}
|
|
}
|
|
|
|
{ // start of scope for pid found iterator
|
|
// element->uid() may not be AID_SYSTEM for next-best-watermark.
|
|
// will not assume id != LOG_ID_EVENTS or LOG_ID_SECURITY for KISS and
|
|
// long term code stability, find() check should be fast for those ids.
|
|
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(element.pid());
|
|
if (found != mLastWorstPidOfSystem[id].end() && it == found->second) {
|
|
mLastWorstPidOfSystem[id].erase(found);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
|
|
LogBufferElementCollection::iterator bad = it;
|
|
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element->GetTag() : element->uid();
|
|
#endif
|
|
|
|
if (coalesce) {
|
|
stats()->Erase(element.ToLogStatisticsElement());
|
|
} else {
|
|
stats()->Subtract(element.ToLogStatisticsElement());
|
|
}
|
|
|
|
it = SimpleLogBuffer::Erase(it);
|
|
|
|
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
|
|
log_id_for_each(i) {
|
|
for (auto b : mLastWorst[i]) {
|
|
if (bad == b.second) {
|
|
LOG(ERROR) << StringPrintf("stale mLastWorst[%d] key=%d mykey=%d", i, b.first, key);
|
|
}
|
|
}
|
|
for (auto b : mLastWorstPidOfSystem[i]) {
|
|
if (bad == b.second) {
|
|
LOG(ERROR) << StringPrintf("stale mLastWorstPidOfSystem[%d] pid=%d", i, b.first);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return it;
|
|
}
|
|
|
|
// Define a temporary mechanism to report the last LogBufferElement pointer
|
|
// for the specified uid, pid and tid. Used below to help merge-sort when
|
|
// pruning for worst UID.
|
|
class LogBufferElementLast {
|
|
typedef std::unordered_map<uint64_t, LogBufferElement*> LogBufferElementMap;
|
|
LogBufferElementMap map;
|
|
|
|
public:
|
|
bool coalesce(LogBufferElement* element, uint16_t dropped) {
|
|
uint64_t key = LogBufferElementKey(element->uid(), element->pid(), element->tid());
|
|
LogBufferElementMap::iterator it = map.find(key);
|
|
if (it != map.end()) {
|
|
LogBufferElement* found = it->second;
|
|
uint16_t moreDropped = found->dropped_count();
|
|
if ((dropped + moreDropped) > USHRT_MAX) {
|
|
map.erase(it);
|
|
} else {
|
|
found->SetDropped(dropped + moreDropped);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void add(LogBufferElement* element) {
|
|
uint64_t key = LogBufferElementKey(element->uid(), element->pid(), element->tid());
|
|
map[key] = element;
|
|
}
|
|
|
|
void clear() { map.clear(); }
|
|
|
|
void clear(LogBufferElement* element) {
|
|
uint64_t current = element->realtime().nsec() - (EXPIRE_RATELIMIT * NS_PER_SEC);
|
|
for (LogBufferElementMap::iterator it = map.begin(); it != map.end();) {
|
|
LogBufferElement* mapElement = it->second;
|
|
if (mapElement->dropped_count() >= EXPIRE_THRESHOLD &&
|
|
current > mapElement->realtime().nsec()) {
|
|
it = map.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
uint64_t LogBufferElementKey(uid_t uid, pid_t pid, pid_t tid) {
|
|
return uint64_t(uid) << 32 | uint64_t(pid) << 16 | uint64_t(tid);
|
|
}
|
|
};
|
|
|
|
// prune "pruneRows" of type "id" from the buffer.
|
|
//
|
|
// This garbage collection task is used to expire log entries. It is called to
|
|
// remove all logs (clear), all UID logs (unprivileged clear), or every
|
|
// 256 or 10% of the total logs (whichever is less) to prune the logs.
|
|
//
|
|
// First there is a prep phase where we discover the reader region lock that
|
|
// acts as a backstop to any pruning activity to stop there and go no further.
|
|
//
|
|
// There are three major pruning loops that follow. All expire from the oldest
|
|
// entries. Since there are multiple log buffers, the Android logging facility
|
|
// will appear to drop entries 'in the middle' when looking at multiple log
|
|
// sources and buffers. This effect is slightly more prominent when we prune
|
|
// the worst offender by logging source. Thus the logs slowly loose content
|
|
// and value as you move back in time. This is preferred since chatty sources
|
|
// invariably move the logs value down faster as less chatty sources would be
|
|
// expired in the noise.
|
|
//
|
|
// The first pass prunes elements that match 3 possible rules:
|
|
// 1) A high priority prune rule, for example ~100/20, which indicates elements from UID 100 and PID
|
|
// 20 should be pruned in this first pass.
|
|
// 2) The default chatty pruning rule, ~!. This rule sums the total size spent on log messages for
|
|
// each UID this log buffer. If the highest sum consumes more than 12.5% of the log buffer, then
|
|
// these elements from that UID are pruned.
|
|
// 3) The default AID_SYSTEM pruning rule, ~1000/!. This rule is a special case to 2), if
|
|
// AID_SYSTEM is the top consumer of the log buffer, then this rule sums the total size spent on
|
|
// log messages for each PID in AID_SYSTEM in this log buffer and prunes elements from the PID
|
|
// with the highest sum.
|
|
// This pass reevaluates the sums for rules 2) and 3) for every log message pruned. It creates
|
|
// 'chatty' entries for the elements that it prunes and merges related chatty entries together. It
|
|
// completes when one of three conditions have been met:
|
|
// 1) The requested element count has been pruned.
|
|
// 2) There are no elements that match any of these rules.
|
|
// 3) A reader is referencing the oldest element that would match these rules.
|
|
//
|
|
// The second pass prunes elements starting from the beginning of the log. It skips elements that
|
|
// match any low priority prune rules. It completes when one of three conditions have been met:
|
|
// 1) The requested element count has been pruned.
|
|
// 2) All elements except those mwatching low priority prune rules have been pruned.
|
|
// 3) A reader is referencing the oldest element that would match these rules.
|
|
//
|
|
// The final pass only happens if there are any low priority prune rules and if the first two passes
|
|
// were unable to prune the requested number of elements. It prunes elements all starting from the
|
|
// beginning of the log, regardless of if they match any low priority prune rules.
|
|
//
|
|
// If the requested number of logs was unable to be pruned, KickReader() is called to mitigate the
|
|
// situation before the next call to Prune() and the function returns false. Otherwise, if the
|
|
// requested number of logs or all logs present in the buffer are pruned, in the case of Clear(),
|
|
// it returns true.
|
|
bool ChattyLogBuffer::Prune(log_id_t id, unsigned long pruneRows, uid_t caller_uid) {
|
|
LogReaderThread* oldest = nullptr;
|
|
bool clearAll = pruneRows == ULONG_MAX;
|
|
|
|
// Region locked?
|
|
for (const auto& reader_thread : reader_list()->reader_threads()) {
|
|
if (!reader_thread->IsWatching(id)) {
|
|
continue;
|
|
}
|
|
if (!oldest || oldest->start() > reader_thread->start() ||
|
|
(oldest->start() == reader_thread->start() &&
|
|
reader_thread->deadline().time_since_epoch().count() != 0)) {
|
|
oldest = reader_thread.get();
|
|
}
|
|
}
|
|
|
|
LogBufferElementCollection::iterator it;
|
|
|
|
if (__predict_false(caller_uid != AID_ROOT)) { // unlikely
|
|
// Only here if clear all request from non system source, so chatty
|
|
// filter logistics is not required.
|
|
it = GetOldest(id);
|
|
while (it != logs().end()) {
|
|
LogBufferElement& element = *it;
|
|
|
|
if (element.log_id() != id || element.uid() != caller_uid) {
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && oldest->start() <= element.sequence()) {
|
|
KickReader(oldest, id, pruneRows);
|
|
return false;
|
|
}
|
|
|
|
it = Erase(it);
|
|
if (--pruneRows == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// First prune pass.
|
|
bool check_high_priority = id != LOG_ID_SECURITY && prune_->HasHighPriorityPruneRules();
|
|
while (!clearAll && (pruneRows > 0)) {
|
|
// recalculate the worst offender on every batched pass
|
|
int worst = -1; // not valid for uid() or getKey()
|
|
size_t worst_sizes = 0;
|
|
size_t second_worst_sizes = 0;
|
|
pid_t worstPid = 0; // POSIX guarantees PID != 0
|
|
|
|
if (worstUidEnabledForLogid(id) && prune_->worst_uid_enabled()) {
|
|
// Calculate threshold as 12.5% of available storage
|
|
size_t threshold = max_size(id) / 8;
|
|
|
|
if (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) {
|
|
stats()->WorstTwoTags(threshold, &worst, &worst_sizes, &second_worst_sizes);
|
|
// per-pid filter for AID_SYSTEM sources is too complex
|
|
} else {
|
|
stats()->WorstTwoUids(id, threshold, &worst, &worst_sizes, &second_worst_sizes);
|
|
|
|
if (worst == AID_SYSTEM && prune_->worst_pid_of_system_enabled()) {
|
|
stats()->WorstTwoSystemPids(id, worst_sizes, &worstPid, &second_worst_sizes);
|
|
}
|
|
}
|
|
}
|
|
|
|
// skip if we have neither a worst UID or high priority prune rules
|
|
if (worst == -1 && !check_high_priority) {
|
|
break;
|
|
}
|
|
|
|
bool kick = false;
|
|
bool leading = true; // true if starting from the oldest log entry, false if starting from
|
|
// a specific chatty entry.
|
|
// Perform at least one mandatory garbage collection cycle in following
|
|
// - clear leading chatty tags
|
|
// - coalesce chatty tags
|
|
// - check age-out of preserved logs
|
|
bool gc = pruneRows <= 1;
|
|
if (!gc && (worst != -1)) {
|
|
{ // begin scope for worst found iterator
|
|
LogBufferIteratorMap::iterator found = mLastWorst[id].find(worst);
|
|
if (found != mLastWorst[id].end() && found->second != logs().end()) {
|
|
leading = false;
|
|
it = found->second;
|
|
}
|
|
}
|
|
if (worstPid) { // begin scope for pid worst found iterator
|
|
// FYI: worstPid only set if !LOG_ID_EVENTS and
|
|
// !LOG_ID_SECURITY, not going to make that assumption ...
|
|
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(worstPid);
|
|
if (found != mLastWorstPidOfSystem[id].end() && found->second != logs().end()) {
|
|
leading = false;
|
|
it = found->second;
|
|
}
|
|
}
|
|
}
|
|
if (leading) {
|
|
it = GetOldest(id);
|
|
}
|
|
static const log_time too_old{EXPIRE_HOUR_THRESHOLD * 60 * 60, 0};
|
|
LogBufferElementCollection::iterator lastt;
|
|
lastt = logs().end();
|
|
--lastt;
|
|
LogBufferElementLast last;
|
|
while (it != logs().end()) {
|
|
LogBufferElement& element = *it;
|
|
|
|
if (oldest && oldest->start() <= element.sequence()) {
|
|
// Do not let chatty eliding trigger any reader mitigation
|
|
break;
|
|
}
|
|
|
|
if (element.log_id() != id) {
|
|
++it;
|
|
continue;
|
|
}
|
|
// below this point element->log_id() == id
|
|
|
|
uint16_t dropped = element.dropped_count();
|
|
|
|
// remove any leading drops
|
|
if (leading && dropped) {
|
|
it = Erase(it);
|
|
continue;
|
|
}
|
|
|
|
if (dropped && last.coalesce(&element, dropped)) {
|
|
it = Erase(it, true);
|
|
continue;
|
|
}
|
|
|
|
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.GetTag()
|
|
: element.uid();
|
|
|
|
if (check_high_priority && prune_->IsHighPriority(&element)) {
|
|
last.clear(&element);
|
|
it = Erase(it);
|
|
if (dropped) {
|
|
continue;
|
|
}
|
|
|
|
pruneRows--;
|
|
if (pruneRows == 0) {
|
|
break;
|
|
}
|
|
|
|
if (key == worst) {
|
|
kick = true;
|
|
if (worst_sizes < second_worst_sizes) {
|
|
break;
|
|
}
|
|
worst_sizes -= element.msg_len();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (element.realtime() < (lastt->realtime() - too_old) ||
|
|
element.realtime() > lastt->realtime()) {
|
|
break;
|
|
}
|
|
|
|
if (dropped) {
|
|
last.add(&element);
|
|
if (worstPid && ((!gc && element.pid() == worstPid) ||
|
|
mLastWorstPidOfSystem[id].find(element.pid()) ==
|
|
mLastWorstPidOfSystem[id].end())) {
|
|
// element->uid() may not be AID_SYSTEM, next best
|
|
// watermark if current one empty. id is not LOG_ID_EVENTS
|
|
// or LOG_ID_SECURITY because of worstPid check.
|
|
mLastWorstPidOfSystem[id][element.pid()] = it;
|
|
}
|
|
if ((!gc && !worstPid && (key == worst)) ||
|
|
(mLastWorst[id].find(key) == mLastWorst[id].end())) {
|
|
mLastWorst[id][key] = it;
|
|
}
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (key != worst || (worstPid && element.pid() != worstPid)) {
|
|
leading = false;
|
|
last.clear(&element);
|
|
++it;
|
|
continue;
|
|
}
|
|
// key == worst below here
|
|
// If worstPid set, then element->pid() == worstPid below here
|
|
|
|
pruneRows--;
|
|
if (pruneRows == 0) {
|
|
break;
|
|
}
|
|
|
|
kick = true;
|
|
|
|
uint16_t len = element.msg_len();
|
|
|
|
// do not create any leading drops
|
|
if (leading) {
|
|
it = Erase(it);
|
|
} else {
|
|
stats()->Drop(element.ToLogStatisticsElement());
|
|
element.SetDropped(1);
|
|
if (last.coalesce(&element, 1)) {
|
|
it = Erase(it, true);
|
|
} else {
|
|
last.add(&element);
|
|
if (worstPid && (!gc || mLastWorstPidOfSystem[id].find(worstPid) ==
|
|
mLastWorstPidOfSystem[id].end())) {
|
|
// element->uid() may not be AID_SYSTEM, next best
|
|
// watermark if current one empty. id is not
|
|
// LOG_ID_EVENTS or LOG_ID_SECURITY because of worstPid.
|
|
mLastWorstPidOfSystem[id][worstPid] = it;
|
|
}
|
|
if ((!gc && !worstPid) || mLastWorst[id].find(worst) == mLastWorst[id].end()) {
|
|
mLastWorst[id][worst] = it;
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
if (worst_sizes < second_worst_sizes) {
|
|
break;
|
|
}
|
|
worst_sizes -= len;
|
|
}
|
|
last.clear();
|
|
|
|
if (!kick || !prune_->worst_uid_enabled()) {
|
|
break; // the following loop will ask bad clients to skip/drop
|
|
}
|
|
}
|
|
|
|
// Second prune pass.
|
|
bool skipped_low_priority_prune = false;
|
|
bool check_low_priority =
|
|
id != LOG_ID_SECURITY && prune_->HasLowPriorityPruneRules() && !clearAll;
|
|
it = GetOldest(id);
|
|
while (pruneRows > 0 && it != logs().end()) {
|
|
LogBufferElement& element = *it;
|
|
|
|
if (element.log_id() != id) {
|
|
it++;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && oldest->start() <= element.sequence()) {
|
|
if (!skipped_low_priority_prune) KickReader(oldest, id, pruneRows);
|
|
break;
|
|
}
|
|
|
|
if (check_low_priority && !element.dropped_count() && prune_->IsLowPriority(&element)) {
|
|
skipped_low_priority_prune = true;
|
|
it++;
|
|
continue;
|
|
}
|
|
|
|
it = Erase(it);
|
|
pruneRows--;
|
|
}
|
|
|
|
// Third prune pass.
|
|
if (skipped_low_priority_prune && pruneRows > 0) {
|
|
it = GetOldest(id);
|
|
while (it != logs().end() && pruneRows > 0) {
|
|
LogBufferElement& element = *it;
|
|
|
|
if (element.log_id() != id) {
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && oldest->start() <= element.sequence()) {
|
|
KickReader(oldest, id, pruneRows);
|
|
break;
|
|
}
|
|
|
|
it = Erase(it);
|
|
pruneRows--;
|
|
}
|
|
}
|
|
|
|
return pruneRows == 0 || it == logs().end();
|
|
}
|