android_system_core/libunwindstack/tests/MapInfoCreateMemoryTest.cpp
Christopher Ferris 3f805ac3f8 Add proper support for embedded elf files.
- Add a method to get the max size of an elf file by reading the
  section header offset + size. This will properly map an elf
  file embedded into an apk, instead of just mapping in what is done
  by the dynamic linker. It does assume that the section headers are
  at the end of the elf file.
- Add new tests for the above functionality.
- Update the unwind_symbols tool to take an address for finding a
  function instead of dumping the entire symbol table.

Bug: 23762183

Test: Unit tests pass, unwind through the camera process and verify
Test: the GoogleCamera.apk shows some function names.
Change-Id: I00c021680fe1d43b60d652bf91bbf6667d9617be
2017-08-30 15:50:11 -07:00

267 lines
8.9 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <vector>
#include <android-base/file.h>
#include <android-base/test_utils.h>
#include <gtest/gtest.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
namespace unwindstack {
class MapInfoCreateMemoryTest : public ::testing::Test {
protected:
template <typename Ehdr, typename Shdr>
static void InitElf(int fd, uint64_t file_offset, uint64_t sh_offset, uint8_t class_type) {
std::vector<uint8_t> buffer(20000);
memset(buffer.data(), 0, buffer.size());
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
memcpy(ehdr.e_ident, ELFMAG, SELFMAG);
ehdr.e_ident[EI_CLASS] = class_type;
ehdr.e_shoff = sh_offset;
ehdr.e_shentsize = sizeof(Shdr) + 100;
ehdr.e_shnum = 4;
memcpy(&buffer[file_offset], &ehdr, sizeof(ehdr));
ASSERT_TRUE(android::base::WriteFully(fd, buffer.data(), buffer.size()));
}
static void SetUpTestCase() {
std::vector<uint8_t> buffer(1024);
memset(buffer.data(), 0, buffer.size());
memcpy(buffer.data(), ELFMAG, SELFMAG);
buffer[EI_CLASS] = ELFCLASS32;
ASSERT_TRUE(android::base::WriteFully(elf_.fd, buffer.data(), buffer.size()));
memset(buffer.data(), 0, buffer.size());
memcpy(&buffer[0x100], ELFMAG, SELFMAG);
buffer[0x100 + EI_CLASS] = ELFCLASS64;
ASSERT_TRUE(android::base::WriteFully(elf_at_100_.fd, buffer.data(), buffer.size()));
InitElf<Elf32_Ehdr, Elf32_Shdr>(elf32_at_map_.fd, 0x1000, 0x2000, ELFCLASS32);
InitElf<Elf64_Ehdr, Elf64_Shdr>(elf64_at_map_.fd, 0x2000, 0x3000, ELFCLASS64);
}
static TemporaryFile elf_;
static TemporaryFile elf_at_100_;
static TemporaryFile elf32_at_map_;
static TemporaryFile elf64_at_map_;
};
TemporaryFile MapInfoCreateMemoryTest::elf_;
TemporaryFile MapInfoCreateMemoryTest::elf_at_100_;
TemporaryFile MapInfoCreateMemoryTest::elf32_at_map_;
TemporaryFile MapInfoCreateMemoryTest::elf64_at_map_;
TEST_F(MapInfoCreateMemoryTest, end_le_start) {
MapInfo info{.start = 0x100, .end = 0x100, .offset = 0, .name = elf_.path};
std::unique_ptr<Memory> memory;
memory.reset(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() == nullptr);
info.end = 0xff;
memory.reset(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() == nullptr);
// Make sure this test is valid.
info.end = 0x101;
memory.reset(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
}
// Verify that if the offset is non-zero but there is no elf at the offset,
// that the full file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_full_file) {
MapInfo info{.start = 0x100, .end = 0x200, .offset = 0x100, .name = elf_.path};
std::unique_ptr<Memory> memory(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0x100U, info.elf_offset);
// Read the entire file.
std::vector<uint8_t> buffer(1024);
ASSERT_TRUE(memory->Read(0, buffer.data(), 1024));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS32, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->Read(1024, buffer.data(), 1));
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file) {
MapInfo info{.start = 0x100, .end = 0x200, .offset = 0x100, .name = elf_at_100_.path};
std::unique_ptr<Memory> memory(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Read the valid part of the file.
std::vector<uint8_t> buffer(0x100);
ASSERT_TRUE(memory->Read(0, buffer.data(), 0x100));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS64, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->Read(0x100, buffer.data(), 1));
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used. Further verify that if the
// embedded elf is bigger than the initial map, the new object is larger
// than the original map size. Do this for a 32 bit elf and a 64 bit elf.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf32) {
MapInfo info{.start = 0x5000, .end = 0x6000, .offset = 0x1000, .name = elf32_at_map_.path};
std::unique_ptr<Memory> memory(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->Read(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->Read(0x1000, e_ident, 1));
}
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf64) {
MapInfo info{.start = 0x7000, .end = 0x8000, .offset = 0x2000, .name = elf64_at_map_.path};
std::unique_ptr<Memory> memory(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->Read(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->Read(0x1000, e_ident, 1));
}
// Verify that device file names will never result in Memory object creation.
TEST_F(MapInfoCreateMemoryTest, check_device_maps) {
// Set up some memory so that a valid local memory object would
// be returned if the file mapping fails, but the device check is incorrect.
std::vector<uint8_t> buffer(1024);
MapInfo info;
info.start = reinterpret_cast<uint64_t>(buffer.data());
info.end = info.start + buffer.size();
info.offset = 0;
std::unique_ptr<Memory> memory;
info.flags = 0x8000;
info.name = "/dev/something";
memory.reset(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() == nullptr);
}
TEST_F(MapInfoCreateMemoryTest, local_memory) {
// Set up some memory for a valid local memory object.
std::vector<uint8_t> buffer(1024);
for (size_t i = 0; i < buffer.size(); i++) {
buffer[i] = i % 256;
}
MapInfo info;
info.start = reinterpret_cast<uint64_t>(buffer.data());
info.end = info.start + buffer.size();
info.offset = 0;
std::unique_ptr<Memory> memory;
memory.reset(info.CreateMemory(getpid()));
ASSERT_TRUE(memory.get() != nullptr);
std::vector<uint8_t> read_buffer(1024);
ASSERT_TRUE(memory->Read(0, read_buffer.data(), read_buffer.size()));
for (size_t i = 0; i < read_buffer.size(); i++) {
ASSERT_EQ(i % 256, read_buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->Read(read_buffer.size(), read_buffer.data(), 1));
}
TEST_F(MapInfoCreateMemoryTest, remote_memory) {
std::vector<uint8_t> buffer(1024);
memset(buffer.data(), 0xa, buffer.size());
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) != -1);
uint64_t iterations = 0;
siginfo_t si;
while (TEMP_FAILURE_RETRY(ptrace(PTRACE_GETSIGINFO, pid, 0, &si)) < 0 && errno == ESRCH) {
usleep(30);
iterations++;
ASSERT_LT(iterations, 500000000ULL);
}
MapInfo info;
info.start = reinterpret_cast<uint64_t>(buffer.data());
info.end = info.start + buffer.size();
info.offset = 0;
std::unique_ptr<Memory> memory;
memory.reset(info.CreateMemory(pid));
ASSERT_TRUE(memory.get() != nullptr);
// Set the local memory to a different value to guarantee we are reading
// from the remote process.
memset(buffer.data(), 0x1, buffer.size());
std::vector<uint8_t> read_buffer(1024);
ASSERT_TRUE(memory->Read(0, read_buffer.data(), read_buffer.size()));
for (size_t i = 0; i < read_buffer.size(); i++) {
ASSERT_EQ(0xaU, read_buffer[i]) << "Failed at byte " << i;
}
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
kill(pid, SIGKILL);
ASSERT_EQ(pid, wait(nullptr));
}
} // namespace unwindstack