android_system_core/adb/client/usb_osx.cpp
Josh Gao ef3d343254 adb: use the actual wMaxPacketSize for usb endpoints.
Previously, adb was assuming a fixed maximum packet size of 1024 bytes
(the value for an endpoint connected via USB 3.0). When connected to an
endpoint that has an actual maximum packet size of 512 bytes (i.e.
every single device over USB 2.0), the following could occur:

    device sends amessage with 512 byte payload
    client reads amessage
    client tries to read payload with a length of 1024

In this scenario, the kernel will block, waiting for an additional
packet which won't arrive until something else gets sent across the
wire, which will result in the previous read failing, and the new
packet being dropped.

Bug: http://b/37783561
Test: python test_device.py on linux/darwin, with native/libusb
Change-Id: I556f5344945e22dd1533b076f662a97eea24628e
2017-05-03 12:32:39 -07:00

573 lines
18 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG USB
#include "sysdeps.h"
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/IOCFPlugIn.h>
#include <IOKit/usb/IOUSBLib.h>
#include <IOKit/IOMessage.h>
#include <mach/mach_port.h>
#include <inttypes.h>
#include <stdio.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <mutex>
#include <thread>
#include <vector>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "adb.h"
#include "transport.h"
using namespace std::chrono_literals;
namespace native {
struct usb_handle
{
UInt8 bulkIn;
UInt8 bulkOut;
IOUSBInterfaceInterface190** interface;
unsigned int zero_mask;
size_t max_packet_size;
// For garbage collecting disconnected devices.
bool mark;
std::string devpath;
std::atomic<bool> dead;
usb_handle()
: bulkIn(0),
bulkOut(0),
interface(nullptr),
zero_mask(0),
max_packet_size(0),
mark(false),
dead(false) {}
};
static std::atomic<bool> usb_inited_flag;
static auto& g_usb_handles_mutex = *new std::mutex();
static auto& g_usb_handles = *new std::vector<std::unique_ptr<usb_handle>>();
static bool IsKnownDevice(const std::string& devpath) {
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
for (auto& usb : g_usb_handles) {
if (usb->devpath == devpath) {
// Set mark flag to indicate this device is still alive.
usb->mark = true;
return true;
}
}
return false;
}
static void usb_kick_locked(usb_handle* handle);
static void KickDisconnectedDevices() {
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
for (auto& usb : g_usb_handles) {
if (!usb->mark) {
usb_kick_locked(usb.get());
} else {
usb->mark = false;
}
}
}
static void AddDevice(std::unique_ptr<usb_handle> handle) {
handle->mark = true;
std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
g_usb_handles.push_back(std::move(handle));
}
static void AndroidInterfaceAdded(io_iterator_t iterator);
static std::unique_ptr<usb_handle> CheckInterface(IOUSBInterfaceInterface190 **iface,
UInt16 vendor, UInt16 product);
static bool FindUSBDevices() {
// Create the matching dictionary to find the Android device's adb interface.
CFMutableDictionaryRef matchingDict = IOServiceMatching(kIOUSBInterfaceClassName);
if (!matchingDict) {
LOG(ERROR) << "couldn't create USB matching dictionary";
return false;
}
// Create an iterator for all I/O Registry objects that match the dictionary.
io_iterator_t iter = 0;
kern_return_t kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter);
if (kr != KERN_SUCCESS) {
LOG(ERROR) << "failed to get matching services";
return false;
}
// Iterate over all matching objects.
AndroidInterfaceAdded(iter);
IOObjectRelease(iter);
return true;
}
static void
AndroidInterfaceAdded(io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
io_service_t usbInterface;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBInterfaceInterface220 **iface = NULL;
IOUSBDeviceInterface197 **dev = NULL;
HRESULT result;
SInt32 score;
uint32_t locationId;
UInt8 if_class, subclass, protocol;
UInt16 vendor;
UInt16 product;
UInt8 serialIndex;
char serial[256];
std::string devpath;
while ((usbInterface = IOIteratorNext(iterator))) {
//* Create an intermediate interface plugin
kr = IOCreatePlugInInterfaceForService(usbInterface,
kIOUSBInterfaceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
IOObjectRelease(usbInterface);
if ((kIOReturnSuccess != kr) || (!plugInInterface)) {
LOG(ERROR) << "Unable to create an interface plug-in (" << std::hex << kr << ")";
continue;
}
//* This gets us the interface object
result = (*plugInInterface)->QueryInterface(
plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID), (LPVOID*)&iface);
//* We only needed the plugin to get the interface, so discard it
(*plugInInterface)->Release(plugInInterface);
if (result || !iface) {
LOG(ERROR) << "Couldn't query the interface (" << std::hex << result << ")";
continue;
}
kr = (*iface)->GetInterfaceClass(iface, &if_class);
kr = (*iface)->GetInterfaceSubClass(iface, &subclass);
kr = (*iface)->GetInterfaceProtocol(iface, &protocol);
if(if_class != ADB_CLASS || subclass != ADB_SUBCLASS || protocol != ADB_PROTOCOL) {
// Ignore non-ADB devices.
LOG(DEBUG) << "Ignoring interface with incorrect class/subclass/protocol - " << if_class
<< ", " << subclass << ", " << protocol;
(*iface)->Release(iface);
continue;
}
//* this gets us an ioservice, with which we will find the actual
//* device; after getting a plugin, and querying the interface, of
//* course.
//* Gotta love OS X
kr = (*iface)->GetDevice(iface, &usbDevice);
if (kIOReturnSuccess != kr || !usbDevice) {
LOG(ERROR) << "Couldn't grab device from interface (" << std::hex << kr << ")";
(*iface)->Release(iface);
continue;
}
plugInInterface = NULL;
score = 0;
//* create an intermediate device plugin
kr = IOCreatePlugInInterfaceForService(usbDevice,
kIOUSBDeviceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//* only needed this to find the plugin
(void)IOObjectRelease(usbDevice);
if ((kIOReturnSuccess != kr) || (!plugInInterface)) {
LOG(ERROR) << "Unable to create a device plug-in (" << std::hex << kr << ")";
(*iface)->Release(iface);
continue;
}
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID), (LPVOID*)&dev);
//* only needed this to query the plugin
(*plugInInterface)->Release(plugInInterface);
if (result || !dev) {
LOG(ERROR) << "Couldn't create a device interface (" << std::hex << result << ")";
(*iface)->Release(iface);
continue;
}
//* Now after all that, we actually have a ref to the device and
//* the interface that matched our criteria
kr = (*dev)->GetDeviceVendor(dev, &vendor);
kr = (*dev)->GetDeviceProduct(dev, &product);
kr = (*dev)->GetLocationID(dev, &locationId);
if (kr == KERN_SUCCESS) {
devpath = android::base::StringPrintf("usb:%" PRIu32 "X", locationId);
if (IsKnownDevice(devpath)) {
(*dev)->Release(dev);
(*iface)->Release(iface);
continue;
}
}
kr = (*dev)->USBGetSerialNumberStringIndex(dev, &serialIndex);
if (serialIndex > 0) {
IOUSBDevRequest req;
UInt16 buffer[256];
UInt16 languages[128];
memset(languages, 0, sizeof(languages));
req.bmRequestType =
USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
req.bRequest = kUSBRqGetDescriptor;
req.wValue = (kUSBStringDesc << 8) | 0;
req.wIndex = 0;
req.pData = languages;
req.wLength = sizeof(languages);
kr = (*dev)->DeviceRequest(dev, &req);
if (kr == kIOReturnSuccess && req.wLenDone > 0) {
int langCount = (req.wLenDone - 2) / 2, lang;
for (lang = 1; lang <= langCount; lang++) {
memset(buffer, 0, sizeof(buffer));
memset(&req, 0, sizeof(req));
req.bmRequestType =
USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
req.bRequest = kUSBRqGetDescriptor;
req.wValue = (kUSBStringDesc << 8) | serialIndex;
req.wIndex = languages[lang];
req.pData = buffer;
req.wLength = sizeof(buffer);
kr = (*dev)->DeviceRequest(dev, &req);
if (kr == kIOReturnSuccess && req.wLenDone > 0) {
int i, count;
// skip first word, and copy the rest to the serial string,
// changing shorts to bytes.
count = (req.wLenDone - 1) / 2;
for (i = 0; i < count; i++)
serial[i] = buffer[i + 1];
serial[i] = 0;
break;
}
}
}
}
(*dev)->Release(dev);
VLOG(USB) << android::base::StringPrintf("Found vid=%04x pid=%04x serial=%s\n",
vendor, product, serial);
if (devpath.empty()) {
devpath = serial;
}
if (IsKnownDevice(devpath)) {
(*iface)->USBInterfaceClose(iface);
(*iface)->Release(iface);
continue;
}
std::unique_ptr<usb_handle> handle = CheckInterface((IOUSBInterfaceInterface190**)iface,
vendor, product);
if (handle == nullptr) {
LOG(ERROR) << "Could not find device interface";
(*iface)->Release(iface);
continue;
}
handle->devpath = devpath;
usb_handle* handle_p = handle.get();
VLOG(USB) << "Add usb device " << serial;
AddDevice(std::move(handle));
register_usb_transport(reinterpret_cast<::usb_handle*>(handle_p), serial, devpath.c_str(),
1);
}
}
// Used to clear both the endpoints before starting.
// When adb quits, we might clear the host endpoint but not the device.
// So we make sure both sides are clear before starting up.
static bool ClearPipeStallBothEnds(IOUSBInterfaceInterface190** interface, UInt8 bulkEp) {
IOReturn rc = (*interface)->ClearPipeStallBothEnds(interface, bulkEp);
if (rc != kIOReturnSuccess) {
LOG(ERROR) << "Could not clear pipe stall both ends: " << std::hex << rc;
return false;
}
return true;
}
//* TODO: simplify this further since we only register to get ADB interface
//* subclass+protocol events
static std::unique_ptr<usb_handle>
CheckInterface(IOUSBInterfaceInterface190 **interface, UInt16 vendor, UInt16 product)
{
std::unique_ptr<usb_handle> handle;
IOReturn kr;
UInt8 interfaceNumEndpoints, interfaceClass, interfaceSubClass, interfaceProtocol;
UInt8 endpoint;
//* Now open the interface. This will cause the pipes associated with
//* the endpoints in the interface descriptor to be instantiated
kr = (*interface)->USBInterfaceOpen(interface);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "Could not open interface: " << std::hex << kr;
return NULL;
}
//* Get the number of endpoints associated with this interface
kr = (*interface)->GetNumEndpoints(interface, &interfaceNumEndpoints);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "Unable to get number of endpoints: " << std::hex << kr;
goto err_get_num_ep;
}
//* Get interface class, subclass and protocol
if ((*interface)->GetInterfaceClass(interface, &interfaceClass) != kIOReturnSuccess ||
(*interface)->GetInterfaceSubClass(interface, &interfaceSubClass) != kIOReturnSuccess ||
(*interface)->GetInterfaceProtocol(interface, &interfaceProtocol) != kIOReturnSuccess) {
LOG(ERROR) << "Unable to get interface class, subclass and protocol";
goto err_get_interface_class;
}
//* check to make sure interface class, subclass and protocol match ADB
//* avoid opening mass storage endpoints
if (!is_adb_interface(interfaceClass, interfaceSubClass, interfaceProtocol)) {
goto err_bad_adb_interface;
}
handle.reset(new usb_handle);
if (handle == nullptr) {
goto err_bad_adb_interface;
}
//* Iterate over the endpoints for this interface and find the first
//* bulk in/out pipes available. These will be our read/write pipes.
for (endpoint = 1; endpoint <= interfaceNumEndpoints; endpoint++) {
UInt8 transferType;
UInt16 maxPacketSize;
UInt8 interval;
UInt8 number;
UInt8 direction;
kr = (*interface)->GetPipeProperties(interface, endpoint, &direction,
&number, &transferType, &maxPacketSize, &interval);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "FindDeviceInterface - could not get pipe properties: "
<< std::hex << kr;
goto err_get_pipe_props;
}
if (kUSBBulk != transferType) continue;
if (kUSBIn == direction) {
handle->bulkIn = endpoint;
if (!ClearPipeStallBothEnds(interface, handle->bulkIn)) goto err_get_pipe_props;
}
if (kUSBOut == direction) {
handle->bulkOut = endpoint;
if (!ClearPipeStallBothEnds(interface, handle->bulkOut)) goto err_get_pipe_props;
}
handle->zero_mask = maxPacketSize - 1;
handle->max_packet_size = maxPacketSize;
}
handle->interface = interface;
return handle;
err_get_pipe_props:
err_bad_adb_interface:
err_get_interface_class:
err_get_num_ep:
(*interface)->USBInterfaceClose(interface);
return nullptr;
}
std::mutex& operate_device_lock = *new std::mutex();
static void RunLoopThread() {
adb_thread_setname("RunLoop");
VLOG(USB) << "RunLoopThread started";
while (true) {
{
std::lock_guard<std::mutex> lock_guard(operate_device_lock);
FindUSBDevices();
KickDisconnectedDevices();
}
// Signal the parent that we are running
usb_inited_flag = true;
std::this_thread::sleep_for(1s);
}
VLOG(USB) << "RunLoopThread done";
}
static void usb_cleanup() {
VLOG(USB) << "usb_cleanup";
// Wait until usb operations in RunLoopThread finish, and prevent further operations.
operate_device_lock.lock();
close_usb_devices();
}
void usb_init() {
static bool initialized = false;
if (!initialized) {
atexit(usb_cleanup);
usb_inited_flag = false;
std::thread(RunLoopThread).detach();
// Wait for initialization to finish
while (!usb_inited_flag) {
std::this_thread::sleep_for(100ms);
}
initialized = true;
}
}
int usb_write(usb_handle *handle, const void *buf, int len)
{
IOReturn result;
if (!len)
return 0;
if (!handle || handle->dead)
return -1;
if (NULL == handle->interface) {
LOG(ERROR) << "usb_write interface was null";
return -1;
}
if (0 == handle->bulkOut) {
LOG(ERROR) << "bulkOut endpoint not assigned";
return -1;
}
result =
(*handle->interface)->WritePipe(handle->interface, handle->bulkOut, (void *)buf, len);
if ((result == 0) && (handle->zero_mask)) {
/* we need 0-markers and our transfer */
if(!(len & handle->zero_mask)) {
result =
(*handle->interface)->WritePipe(
handle->interface, handle->bulkOut, (void *)buf, 0);
}
}
if (0 == result)
return 0;
LOG(ERROR) << "usb_write failed with status: " << std::hex << result;
return -1;
}
int usb_read(usb_handle *handle, void *buf, int len)
{
IOReturn result;
UInt32 numBytes = len;
if (!len) {
return 0;
}
if (!handle || handle->dead) {
return -1;
}
if (NULL == handle->interface) {
LOG(ERROR) << "usb_read interface was null";
return -1;
}
if (0 == handle->bulkIn) {
LOG(ERROR) << "bulkIn endpoint not assigned";
return -1;
}
result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes);
if (kIOUSBPipeStalled == result) {
LOG(ERROR) << "Pipe stalled, clearing stall.\n";
(*handle->interface)->ClearPipeStall(handle->interface, handle->bulkIn);
result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes);
}
if (kIOReturnSuccess == result)
return numBytes;
else {
LOG(ERROR) << "usb_read failed with status: " << std::hex << result;
}
return -1;
}
int usb_close(usb_handle *handle)
{
std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
for (auto it = g_usb_handles.begin(); it != g_usb_handles.end(); ++it) {
if ((*it).get() == handle) {
g_usb_handles.erase(it);
break;
}
}
return 0;
}
static void usb_kick_locked(usb_handle *handle)
{
LOG(INFO) << "Kicking handle";
/* release the interface */
if (!handle)
return;
if (!handle->dead)
{
handle->dead = true;
(*handle->interface)->USBInterfaceClose(handle->interface);
(*handle->interface)->Release(handle->interface);
}
}
void usb_kick(usb_handle *handle) {
// Use the lock to avoid multiple thread kicking the device at the same time.
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
usb_kick_locked(handle);
}
size_t usb_get_max_packet_size(usb_handle* handle) {
return handle->max_packet_size;
}
} // namespace native