android_system_core/include/utils/Flattenable.h
David Pursell 2ebce7384b Flattenable: switch from assignment to memcpy().
FlattenableUtils read() and write() currently use assignment to copy
bytes. However, by casting the void* buffer to type T, the compiler is
allowed to assume that buffer obeys the alignment requirements of T,
which is not necessarily the case during serialization. On some
architectures, we can get SIGBUS when this alignment is violated.

We don't want the users of these routines to have to worry about
alignment when packing structures, so use memcpy() instead which should
always be safe since the compiler won't assume any alignment for the
void* buffer.

On architectures that can handle unaligned direct read/write of type T,
the compiler should be smart enough to optimize this code back to a
direct read/write anyway, but architectures that can't handle it will
fall back to memcpy; this means that this change shouldn't have any
impact on current Android devices. See the linked bug for more details.

Bug: http://b/31671510
Test: libgui Sensor serialization no longer gives SIGBUS.
Test: libgui.so unchanged on Shamu before and after this CL.
Change-Id: I2197127e8cbfb43f4f553bda6464f6ebe087febd
2016-09-23 13:56:40 -07:00

205 lines
6.7 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_UTILS_FLATTENABLE_H
#define ANDROID_UTILS_FLATTENABLE_H
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/Debug.h>
#include <type_traits>
namespace android {
class FlattenableUtils {
public:
template<int N>
static size_t align(size_t size) {
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( !(N & (N-1)) );
return (size + (N-1)) & ~(N-1);
}
template<int N>
static size_t align(void const*& buffer) {
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( !(N & (N-1)) );
intptr_t b = intptr_t(buffer);
buffer = (void*)((intptr_t(buffer) + (N-1)) & ~(N-1));
return size_t(intptr_t(buffer) - b);
}
template<int N>
static size_t align(void*& buffer) {
return align<N>( const_cast<void const*&>(buffer) );
}
static void advance(void*& buffer, size_t& size, size_t offset) {
buffer = reinterpret_cast<void*>( intptr_t(buffer) + offset );
size -= offset;
}
static void advance(void const*& buffer, size_t& size, size_t offset) {
buffer = reinterpret_cast<void const*>( intptr_t(buffer) + offset );
size -= offset;
}
// write a POD structure
template<typename T>
static void write(void*& buffer, size_t& size, const T& value) {
static_assert(std::is_trivially_copyable<T>::value,
"Cannot flatten a non-trivially-copyable type");
memcpy(buffer, &value, sizeof(T));
advance(buffer, size, sizeof(T));
}
// read a POD structure
template<typename T>
static void read(void const*& buffer, size_t& size, T& value) {
static_assert(std::is_trivially_copyable<T>::value,
"Cannot unflatten a non-trivially-copyable type");
memcpy(&value, buffer, sizeof(T));
advance(buffer, size, sizeof(T));
}
};
/*
* The Flattenable protocol allows an object to serialize itself out
* to a byte-buffer and an array of file descriptors.
* Flattenable objects must implement this protocol.
*/
template <typename T>
class Flattenable {
public:
// size in bytes of the flattened object
inline size_t getFlattenedSize() const;
// number of file descriptors to flatten
inline size_t getFdCount() const;
// flattens the object into buffer.
// size should be at least of getFlattenedSize()
// file descriptors are written in the fds[] array but ownership is
// not transfered (ie: they must be dupped by the caller of
// flatten() if needed).
inline status_t flatten(void*& buffer, size_t& size, int*& fds, size_t& count) const;
// unflattens the object from buffer.
// size should be equal to the value of getFlattenedSize() when the
// object was flattened.
// unflattened file descriptors are found in the fds[] array and
// don't need to be dupped(). ie: the caller of unflatten doesn't
// keep ownership. If a fd is not retained by unflatten() it must be
// explicitly closed.
inline status_t unflatten(void const*& buffer, size_t& size, int const*& fds, size_t& count);
};
template<typename T>
inline size_t Flattenable<T>::getFlattenedSize() const {
return static_cast<T const*>(this)->T::getFlattenedSize();
}
template<typename T>
inline size_t Flattenable<T>::getFdCount() const {
return static_cast<T const*>(this)->T::getFdCount();
}
template<typename T>
inline status_t Flattenable<T>::flatten(
void*& buffer, size_t& size, int*& fds, size_t& count) const {
return static_cast<T const*>(this)->T::flatten(buffer, size, fds, count);
}
template<typename T>
inline status_t Flattenable<T>::unflatten(
void const*& buffer, size_t& size, int const*& fds, size_t& count) {
return static_cast<T*>(this)->T::unflatten(buffer, size, fds, count);
}
/*
* LightFlattenable is a protocol allowing object to serialize themselves out
* to a byte-buffer. Because it doesn't handle file-descriptors,
* LightFlattenable is usually more size efficient than Flattenable.
* LightFlattenable objects must implement this protocol.
*/
template <typename T>
class LightFlattenable {
public:
// returns whether this object always flatten into the same size.
// for efficiency, this should always be inline.
inline bool isFixedSize() const;
// returns size in bytes of the flattened object. must be a constant.
inline size_t getFlattenedSize() const;
// flattens the object into buffer.
inline status_t flatten(void* buffer, size_t size) const;
// unflattens the object from buffer of given size.
inline status_t unflatten(void const* buffer, size_t size);
};
template <typename T>
inline bool LightFlattenable<T>::isFixedSize() const {
return static_cast<T const*>(this)->T::isFixedSize();
}
template <typename T>
inline size_t LightFlattenable<T>::getFlattenedSize() const {
return static_cast<T const*>(this)->T::getFlattenedSize();
}
template <typename T>
inline status_t LightFlattenable<T>::flatten(void* buffer, size_t size) const {
return static_cast<T const*>(this)->T::flatten(buffer, size);
}
template <typename T>
inline status_t LightFlattenable<T>::unflatten(void const* buffer, size_t size) {
return static_cast<T*>(this)->T::unflatten(buffer, size);
}
/*
* LightFlattenablePod is an implementation of the LightFlattenable protocol
* for POD (plain-old-data) objects.
* Simply derive from LightFlattenablePod<Foo> to make Foo flattenable; no
* need to implement any methods; obviously Foo must be a POD structure.
*/
template <typename T>
class LightFlattenablePod : public LightFlattenable<T> {
public:
inline bool isFixedSize() const {
return true;
}
inline size_t getFlattenedSize() const {
return sizeof(T);
}
inline status_t flatten(void* buffer, size_t size) const {
if (size < sizeof(T)) return NO_MEMORY;
*reinterpret_cast<T*>(buffer) = *static_cast<T const*>(this);
return NO_ERROR;
}
inline status_t unflatten(void const* buffer, size_t) {
*static_cast<T*>(this) = *reinterpret_cast<T const*>(buffer);
return NO_ERROR;
}
};
}; // namespace android
#endif /* ANDROID_UTILS_FLATTENABLE_H */