android_system_core/libunwindstack/tests/ElfInterfaceArmTest.cpp
Christopher Ferris d06001d6e0 Split arch data into separate files.
Add an ArchEnum to express the arch of the Elf objects and Reg objects.

Split out the regs code into per arch pieces and generic parts.
Also, split out the header files for each arch.

Do not break out the test code yet, there isn't enough and it doesn't
help to maintain the tests.

Test: libunwindstack/libbacktrace/debuggerd unit tests pass.
Test: Running debuggerd -b <PIDS> yields valid data on bullhead.
Change-Id: If61f6c730c9ff2249f986b41de8c4d62f7158325
2017-12-06 16:01:40 -08:00

440 lines
14 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <gtest/gtest.h>
#include <vector>
#include <unwindstack/RegsArm.h>
#include "ElfInterfaceArm.h"
#include "MachineArm.h"
#include "ElfFake.h"
#include "MemoryFake.h"
namespace unwindstack {
class ElfInterfaceArmTest : public ::testing::Test {
protected:
void SetUp() override {
memory_.Clear();
process_memory_.Clear();
}
MemoryFake memory_;
MemoryFake process_memory_;
};
TEST_F(ElfInterfaceArmTest, GetPrel32Addr) {
ElfInterfaceArmFake interface(&memory_);
memory_.SetData32(0x1000, 0x230000);
uint32_t value;
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0x231000U, value);
memory_.SetData32(0x1000, 0x80001000);
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0x2000U, value);
memory_.SetData32(0x1000, 0x70001000);
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0xf0002000U, value);
}
TEST_F(ElfInterfaceArmTest, FindEntry_start_zero) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0);
interface.FakeSetTotalEntries(10);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_no_entries) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x100);
interface.FakeSetTotalEntries(0);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_no_valid_memory) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x100);
interface.FakeSetTotalEntries(2);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_ip_before_first) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x1000, 0x6000);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_single_entry_negative_value) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x8000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x8000, 0x7fffff00);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7ff0, &entry_offset));
ASSERT_EQ(0x8000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_two_entries) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x7000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7000, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_last_check_single_entry) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x1000, 0x6000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7000, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x8000);
ASSERT_TRUE(interface.FindEntry(0x7004, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_last_check_multiple_entries) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x8000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x9008, &entry_offset));
ASSERT_EQ(0x1008U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x16000);
memory_.SetData32(0x1008, 0x18000);
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1008U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_multiple_entries_even) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(4);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x7000);
memory_.SetData32(0x1010, 0x8000);
memory_.SetData32(0x1018, 0x9000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x16000);
memory_.SetData32(0x1008, 0x17000);
memory_.SetData32(0x1010, 0x18000);
memory_.SetData32(0x1018, 0x19000);
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_multiple_entries_odd) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(5);
memory_.SetData32(0x1000, 0x5000);
memory_.SetData32(0x1008, 0x6000);
memory_.SetData32(0x1010, 0x7000);
memory_.SetData32(0x1018, 0x8000);
memory_.SetData32(0x1020, 0x9000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x8100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x15000);
memory_.SetData32(0x1008, 0x16000);
memory_.SetData32(0x1010, 0x17000);
memory_.SetData32(0x1018, 0x18000);
memory_.SetData32(0x1020, 0x19000);
ASSERT_TRUE(interface.FindEntry(0x8100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, iterate) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(5);
memory_.SetData32(0x1000, 0x5000);
memory_.SetData32(0x1008, 0x6000);
memory_.SetData32(0x1010, 0x7000);
memory_.SetData32(0x1018, 0x8000);
memory_.SetData32(0x1020, 0x9000);
std::vector<uint32_t> entries;
for (auto addr : interface) {
entries.push_back(addr);
}
ASSERT_EQ(5U, entries.size());
ASSERT_EQ(0x6000U, entries[0]);
ASSERT_EQ(0x7008U, entries[1]);
ASSERT_EQ(0x8010U, entries[2]);
ASSERT_EQ(0x9018U, entries[3]);
ASSERT_EQ(0xa020U, entries[4]);
// Make sure the iterate cached the entries.
memory_.SetData32(0x1000, 0x11000);
memory_.SetData32(0x1008, 0x12000);
memory_.SetData32(0x1010, 0x13000);
memory_.SetData32(0x1018, 0x14000);
memory_.SetData32(0x1020, 0x15000);
entries.clear();
for (auto addr : interface) {
entries.push_back(addr);
}
ASSERT_EQ(5U, entries.size());
ASSERT_EQ(0x6000U, entries[0]);
ASSERT_EQ(0x7008U, entries[1]);
ASSERT_EQ(0x8010U, entries[2]);
ASSERT_EQ(0x9018U, entries[3]);
ASSERT_EQ(0xa020U, entries[4]);
}
TEST_F(ElfInterfaceArmTest, HandleType_not_arm_exidx) {
ElfInterfaceArmFake interface(&memory_);
ASSERT_FALSE(interface.HandleType(0x1000, PT_NULL, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOAD, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_DYNAMIC, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_INTERP, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_NOTE, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_SHLIB, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_PHDR, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_TLS, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOOS, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_HIOS, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOPROC, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_HIPROC, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_GNU_EH_FRAME, 0));
ASSERT_FALSE(interface.HandleType(0x1000, PT_GNU_STACK, 0));
}
TEST_F(ElfInterfaceArmTest, HandleType_arm_exidx) {
ElfInterfaceArmFake interface(&memory_);
Elf32_Phdr phdr;
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(100);
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0xa00;
// Verify that if reads fail, we don't set the values but still get true.
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001, 0));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(100U, interface.total_entries());
// Verify that if the second read fails, we still don't set the values.
memory_.SetData32(
0x1000 + reinterpret_cast<uint64_t>(&phdr.p_vaddr) - reinterpret_cast<uint64_t>(&phdr),
phdr.p_vaddr);
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001, 0));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(100U, interface.total_entries());
// Everything is correct and present.
memory_.SetData32(
0x1000 + reinterpret_cast<uint64_t>(&phdr.p_memsz) - reinterpret_cast<uint64_t>(&phdr),
phdr.p_memsz);
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001, 0));
ASSERT_EQ(0x2000U, interface.start_offset());
ASSERT_EQ(320U, interface.total_entries());
// Non-zero load bias.
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001, 0x1000));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(320U, interface.total_entries());
}
TEST_F(ElfInterfaceArmTest, StepExidx) {
ElfInterfaceArmFake interface(&memory_);
// FindEntry fails.
bool finished;
ASSERT_FALSE(interface.StepExidx(0x7000, nullptr, nullptr, &finished));
// ExtractEntry should fail.
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x8000);
RegsArm regs;
regs[ARM_REG_SP] = 0x1000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
ASSERT_FALSE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
// Eval should fail.
memory_.SetData32(0x1004, 0x81000000);
ASSERT_FALSE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
// Everything should pass.
memory_.SetData32(0x1004, 0x80b0b0b0);
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_FALSE(finished);
ASSERT_EQ(0x1000U, regs.sp());
ASSERT_EQ(0x1000U, regs[ARM_REG_SP]);
ASSERT_EQ(0x20000U, regs.pc());
ASSERT_EQ(0x20000U, regs[ARM_REG_PC]);
}
TEST_F(ElfInterfaceArmTest, StepExidx_pc_set) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1004, 0x808800b0);
memory_.SetData32(0x1008, 0x8000);
process_memory_.SetData32(0x10000, 0x10);
RegsArm regs;
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
// Everything should pass.
bool finished;
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_FALSE(finished);
ASSERT_EQ(0x10004U, regs.sp());
ASSERT_EQ(0x10004U, regs[ARM_REG_SP]);
ASSERT_EQ(0x10U, regs.pc());
ASSERT_EQ(0x10U, regs[ARM_REG_PC]);
}
TEST_F(ElfInterfaceArmTest, StepExidx_cant_unwind) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1004, 1);
RegsArm regs;
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
bool finished;
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_TRUE(finished);
ASSERT_EQ(0x10000U, regs.sp());
ASSERT_EQ(0x10000U, regs[ARM_REG_SP]);
ASSERT_EQ(0x1234U, regs.pc());
}
TEST_F(ElfInterfaceArmTest, StepExidx_refuse_unwind) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1004, 0x808000b0);
RegsArm regs;
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
bool finished;
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_TRUE(finished);
ASSERT_EQ(0x10000U, regs.sp());
ASSERT_EQ(0x10000U, regs[ARM_REG_SP]);
ASSERT_EQ(0x1234U, regs.pc());
}
TEST_F(ElfInterfaceArmTest, StepExidx_pc_zero) {
ElfInterfaceArmFake interface(&memory_);
interface.FakeSetStartOffset(0x1000);
interface.FakeSetTotalEntries(1);
memory_.SetData32(0x1000, 0x6000);
// Set the pc using a pop r15 command.
memory_.SetData32(0x1004, 0x808800b0);
// pc value of zero.
process_memory_.SetData32(0x10000, 0);
RegsArm regs;
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
bool finished;
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_TRUE(finished);
ASSERT_EQ(0U, regs.pc());
// Now set the pc from the lr register (pop r14).
memory_.SetData32(0x1004, 0x808400b0);
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_, &finished));
ASSERT_TRUE(finished);
ASSERT_EQ(0U, regs.pc());
}
} // namespace unwindstack