The rosegment linker option results in two maps containing the elf data existing. One is an execute map where the code lives, and the other is the read-only segment which contains the elf header information. If the file backing a shared library in memory is not readable, then the new code will attempt to find the read-only map that has the same name as the current execute segment, and that is at offest zero in the file. Add new unit tests for this functionality. Add the missing MapInfoCreateMemoryTest.cpp to the list of tests. Bug: 109657296 Test: Pass new unit tests. Test: All unit libbacktrace/libunwindstack tests pass with rosegment enabled. Change-Id: If8f69e4a067d77b3f2a7c31e2e5cd989a0702a8c
316 lines
11 KiB
C++
316 lines
11 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <elf.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/test_utils.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <unwindstack/Elf.h>
|
|
#include <unwindstack/MapInfo.h>
|
|
#include <unwindstack/Maps.h>
|
|
#include <unwindstack/Memory.h>
|
|
|
|
#include "ElfTestUtils.h"
|
|
#include "MemoryFake.h"
|
|
|
|
namespace unwindstack {
|
|
|
|
class MapInfoCreateMemoryTest : public ::testing::Test {
|
|
protected:
|
|
template <typename Ehdr, typename Shdr>
|
|
static void InitElf(int fd, uint64_t file_offset, uint64_t sh_offset, uint8_t class_type) {
|
|
std::vector<uint8_t> buffer(20000);
|
|
memset(buffer.data(), 0, buffer.size());
|
|
|
|
Ehdr ehdr;
|
|
memset(&ehdr, 0, sizeof(ehdr));
|
|
memcpy(ehdr.e_ident, ELFMAG, SELFMAG);
|
|
ehdr.e_ident[EI_CLASS] = class_type;
|
|
ehdr.e_shoff = sh_offset;
|
|
ehdr.e_shentsize = sizeof(Shdr) + 100;
|
|
ehdr.e_shnum = 4;
|
|
memcpy(&buffer[file_offset], &ehdr, sizeof(ehdr));
|
|
|
|
ASSERT_TRUE(android::base::WriteFully(fd, buffer.data(), buffer.size()));
|
|
}
|
|
|
|
static void SetUpTestCase() {
|
|
std::vector<uint8_t> buffer(1024);
|
|
memset(buffer.data(), 0, buffer.size());
|
|
memcpy(buffer.data(), ELFMAG, SELFMAG);
|
|
buffer[EI_CLASS] = ELFCLASS32;
|
|
ASSERT_TRUE(android::base::WriteFully(elf_.fd, buffer.data(), buffer.size()));
|
|
|
|
memset(buffer.data(), 0, buffer.size());
|
|
memcpy(&buffer[0x100], ELFMAG, SELFMAG);
|
|
buffer[0x100 + EI_CLASS] = ELFCLASS64;
|
|
ASSERT_TRUE(android::base::WriteFully(elf_at_100_.fd, buffer.data(), buffer.size()));
|
|
|
|
InitElf<Elf32_Ehdr, Elf32_Shdr>(elf32_at_map_.fd, 0x1000, 0x2000, ELFCLASS32);
|
|
InitElf<Elf64_Ehdr, Elf64_Shdr>(elf64_at_map_.fd, 0x2000, 0x3000, ELFCLASS64);
|
|
}
|
|
|
|
void SetUp() override {
|
|
memory_ = new MemoryFake;
|
|
process_memory_.reset(memory_);
|
|
}
|
|
|
|
MemoryFake* memory_;
|
|
std::shared_ptr<Memory> process_memory_;
|
|
|
|
static TemporaryFile elf_;
|
|
|
|
static TemporaryFile elf_at_100_;
|
|
|
|
static TemporaryFile elf32_at_map_;
|
|
static TemporaryFile elf64_at_map_;
|
|
};
|
|
TemporaryFile MapInfoCreateMemoryTest::elf_;
|
|
TemporaryFile MapInfoCreateMemoryTest::elf_at_100_;
|
|
TemporaryFile MapInfoCreateMemoryTest::elf32_at_map_;
|
|
TemporaryFile MapInfoCreateMemoryTest::elf64_at_map_;
|
|
|
|
TEST_F(MapInfoCreateMemoryTest, end_le_start) {
|
|
MapInfo info(nullptr, 0x100, 0x100, 0, 0, elf_.path);
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() == nullptr);
|
|
|
|
info.end = 0xff;
|
|
memory.reset(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() == nullptr);
|
|
|
|
// Make sure this test is valid.
|
|
info.end = 0x101;
|
|
memory.reset(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
}
|
|
|
|
// Verify that if the offset is non-zero but there is no elf at the offset,
|
|
// that the full file is used.
|
|
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_full_file) {
|
|
MapInfo info(nullptr, 0x100, 0x200, 0x100, 0, elf_.path);
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
ASSERT_EQ(0x100U, info.elf_offset);
|
|
|
|
// Read the entire file.
|
|
std::vector<uint8_t> buffer(1024);
|
|
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 1024));
|
|
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
|
|
ASSERT_EQ(ELFCLASS32, buffer[EI_CLASS]);
|
|
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
|
|
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
|
|
ASSERT_FALSE(memory->ReadFully(1024, buffer.data(), 1));
|
|
}
|
|
|
|
// Verify that if the offset is non-zero and there is an elf at that
|
|
// offset, that only part of the file is used.
|
|
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file) {
|
|
MapInfo info(nullptr, 0x100, 0x200, 0x100, 0, elf_at_100_.path);
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
ASSERT_EQ(0U, info.elf_offset);
|
|
|
|
// Read the valid part of the file.
|
|
std::vector<uint8_t> buffer(0x100);
|
|
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100));
|
|
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
|
|
ASSERT_EQ(ELFCLASS64, buffer[EI_CLASS]);
|
|
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
|
|
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
|
|
ASSERT_FALSE(memory->ReadFully(0x100, buffer.data(), 1));
|
|
}
|
|
|
|
// Verify that if the offset is non-zero and there is an elf at that
|
|
// offset, that only part of the file is used. Further verify that if the
|
|
// embedded elf is bigger than the initial map, the new object is larger
|
|
// than the original map size. Do this for a 32 bit elf and a 64 bit elf.
|
|
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf32) {
|
|
MapInfo info(nullptr, 0x5000, 0x6000, 0x1000, 0, elf32_at_map_.path);
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
ASSERT_EQ(0U, info.elf_offset);
|
|
|
|
// Verify the memory is a valid elf.
|
|
uint8_t e_ident[SELFMAG + 1];
|
|
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
|
|
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
|
|
|
|
// Read past the end of what would normally be the size of the map.
|
|
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
|
|
}
|
|
|
|
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf64) {
|
|
MapInfo info(nullptr, 0x7000, 0x8000, 0x2000, 0, elf64_at_map_.path);
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
ASSERT_EQ(0U, info.elf_offset);
|
|
|
|
// Verify the memory is a valid elf.
|
|
uint8_t e_ident[SELFMAG + 1];
|
|
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
|
|
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
|
|
|
|
// Read past the end of what would normally be the size of the map.
|
|
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
|
|
}
|
|
|
|
// Verify that device file names will never result in Memory object creation.
|
|
TEST_F(MapInfoCreateMemoryTest, check_device_maps) {
|
|
// Set up some memory so that a valid local memory object would
|
|
// be returned if the file mapping fails, but the device check is incorrect.
|
|
std::vector<uint8_t> buffer(1024);
|
|
uint64_t start = reinterpret_cast<uint64_t>(buffer.data());
|
|
MapInfo info(nullptr, start, start + buffer.size(), 0, 0x8000, "/dev/something");
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() == nullptr);
|
|
}
|
|
|
|
TEST_F(MapInfoCreateMemoryTest, process_memory) {
|
|
MapInfo info(nullptr, 0x2000, 0x3000, 0, PROT_READ, "");
|
|
|
|
Elf32_Ehdr ehdr = {};
|
|
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
|
|
std::vector<uint8_t> buffer(1024);
|
|
memcpy(buffer.data(), &ehdr, sizeof(ehdr));
|
|
|
|
// Verify that the the process_memory object is used, so seed it
|
|
// with memory.
|
|
for (size_t i = sizeof(ehdr); i < buffer.size(); i++) {
|
|
buffer[i] = i % 256;
|
|
}
|
|
memory_->SetMemory(info.start, buffer.data(), buffer.size());
|
|
|
|
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
|
|
ASSERT_TRUE(memory.get() != nullptr);
|
|
|
|
memset(buffer.data(), 0, buffer.size());
|
|
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), buffer.size()));
|
|
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
|
|
for (size_t i = sizeof(ehdr); i < buffer.size(); i++) {
|
|
ASSERT_EQ(i % 256, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
|
|
// Try to read outside of the map size.
|
|
ASSERT_FALSE(memory->ReadFully(buffer.size(), buffer.data(), 1));
|
|
}
|
|
|
|
TEST_F(MapInfoCreateMemoryTest, valid_rosegment_zero_offset) {
|
|
Maps maps;
|
|
maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0);
|
|
maps.Add(0x1000, 0x2600, 0, PROT_READ, "/only/in/memory.so", 0);
|
|
maps.Add(0x3000, 0x5000, 0x4000, PROT_READ | PROT_EXEC, "/only/in/memory.so", 0);
|
|
|
|
Elf32_Ehdr ehdr = {};
|
|
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
|
|
memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr));
|
|
memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x1600 - sizeof(ehdr), 0xab);
|
|
|
|
// Set the memory in the r-x map.
|
|
memory_->SetMemoryBlock(0x3000, 0x2000, 0x5d);
|
|
|
|
MapInfo* map_info = maps.Find(0x3000);
|
|
ASSERT_TRUE(map_info != nullptr);
|
|
|
|
std::unique_ptr<Memory> mem(map_info->CreateMemory(process_memory_));
|
|
ASSERT_TRUE(mem.get() != nullptr);
|
|
EXPECT_EQ(0x4000UL, map_info->elf_offset);
|
|
EXPECT_EQ(0x4000UL, map_info->offset);
|
|
|
|
// Verify that reading values from this memory works properly.
|
|
std::vector<uint8_t> buffer(0x4000);
|
|
size_t bytes = mem->Read(0, buffer.data(), buffer.size());
|
|
ASSERT_EQ(0x1600UL, bytes);
|
|
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
|
|
for (size_t i = sizeof(ehdr); i < bytes; i++) {
|
|
ASSERT_EQ(0xab, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
|
|
bytes = mem->Read(0x4000, buffer.data(), buffer.size());
|
|
ASSERT_EQ(0x2000UL, bytes);
|
|
for (size_t i = 0; i < bytes; i++) {
|
|
ASSERT_EQ(0x5d, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
}
|
|
|
|
TEST_F(MapInfoCreateMemoryTest, valid_rosegment_non_zero_offset) {
|
|
Maps maps;
|
|
maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0);
|
|
maps.Add(0x1000, 0x2000, 0, PROT_READ, "/only/in/memory.apk", 0);
|
|
maps.Add(0x2000, 0x3000, 0x1000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0);
|
|
maps.Add(0x3000, 0x4000, 0xa000, PROT_READ, "/only/in/memory.apk", 0);
|
|
maps.Add(0x4000, 0x5000, 0xb000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0);
|
|
|
|
Elf32_Ehdr ehdr = {};
|
|
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
|
|
|
|
// Setup an elf at offset 0x1000 in memory.
|
|
memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr));
|
|
memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x2000 - sizeof(ehdr), 0x12);
|
|
memory_->SetMemoryBlock(0x2000, 0x1000, 0x23);
|
|
|
|
// Setup an elf at offset 0x3000 in memory..
|
|
memory_->SetMemory(0x3000, &ehdr, sizeof(ehdr));
|
|
memory_->SetMemoryBlock(0x3000 + sizeof(ehdr), 0x4000 - sizeof(ehdr), 0x34);
|
|
memory_->SetMemoryBlock(0x4000, 0x1000, 0x43);
|
|
|
|
MapInfo* map_info = maps.Find(0x4000);
|
|
ASSERT_TRUE(map_info != nullptr);
|
|
|
|
std::unique_ptr<Memory> mem(map_info->CreateMemory(process_memory_));
|
|
ASSERT_TRUE(mem.get() != nullptr);
|
|
EXPECT_EQ(0x1000UL, map_info->elf_offset);
|
|
EXPECT_EQ(0xb000UL, map_info->offset);
|
|
|
|
// Verify that reading values from this memory works properly.
|
|
std::vector<uint8_t> buffer(0x4000);
|
|
size_t bytes = mem->Read(0, buffer.data(), buffer.size());
|
|
ASSERT_EQ(0x1000UL, bytes);
|
|
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
|
|
for (size_t i = sizeof(ehdr); i < bytes; i++) {
|
|
ASSERT_EQ(0x34, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
|
|
bytes = mem->Read(0x1000, buffer.data(), buffer.size());
|
|
ASSERT_EQ(0x1000UL, bytes);
|
|
for (size_t i = 0; i < bytes; i++) {
|
|
ASSERT_EQ(0x43, buffer[i]) << "Failed at byte " << i;
|
|
}
|
|
}
|
|
|
|
} // namespace unwindstack
|